
  Abstract— Facial expression recognition is a crucial aspect of 
human communication, especially for building social 
relationships. However, machine-based recognition remains a 
challenging task where implemented SOTA methods achieved 
testing accuracies from 50% to 60% on FER-2013. Our research 
proposes an automatic emotion identification system that 
utilizes emotional state heatmaps (ES-MAPs) and neural 
network classification algorithms. Using MediaPipe Face Mesh, 
our system extracts facial landmark coordinates and calculates 
the distance between all landmarks. A neutral baseline is 
subtracted from the landmark distances and saved as a heatmap 
to train a designed CNN model. The use of ES-MAPs minimizes 
noise introduced by significant variation in image lighting 
conditions and variation in head rotation. Our proposed system, 
ESH-Net, achieved 75% in test accuracy, 15% greater than that 
of other state-of-the-art methods on the HDFE dataset. In 
addition, ES-MAPs produced better clustering than the original 
facial images, indicating significant improvement in the 
separability and consistency of representation of emotional 
states. This study demonstrates the potential for emotional state 
heatmaps and deep learning models to significantly improve the 
accuracy and efficiency of emotion identification, which can 
greatly assist in assessing patient’s emotional state in medical 
diagnosis and practice.  

Clinical Relevance— This proposed system can assist in 
objectively patient’s emotional state for medical diagnosis and 
remote symptom tracking for affective disorders.  

I. INTRODUCTION  

Facial expressions are an essential aspect of human 
communication and can enhance our understanding of human 
emotions, enable personalized user experiences, improve 
mental health assessment, and support emotion-driven 
decision-making in various domains [23].  

There is evidence to support universality in facial 
expressions through studies of facial expression in different 
ethnicities and cultures, including preliterate cultures, where 
commonality was found in the expression and recognition of 
emotions on the face [30], [11], [1], [31]. For examples of 
commonalities in expressions, refer to the Github 
documentations. The “Universal facial expressions” are those 
representing happiness, sadness, anger, fear, surprise, and 
disgust. Various approaches have been proposed for machine-
based emotion recognition from facial expressions, including 
rule-based systems, feature-based methods, and machine-
learning techniques [17], [28]. 

Machine learning methods, particularly deep learning 
models like convolutional neural networks (CNNs), have 
shown promising results by reducing the dependence on face-
physics-based models and other pre-processing techniques by 
enabling “end-to-end” learning to occur in the pipeline 
directly from the input images [29]. Traditional machine 

learning algorithms often struggle with complex and dynamic 
facial expressions, but recent studies indicate that deep 
learning algorithms can improve facial emotion recognition 
performance [12], [13], [24], [7]. Studies on self-modified 
FER-2013 datasets have reported high accuracy rates ranging 
between low 60% to low 70% using CNN-based models [24], 
[5], [24], [13], [7], [6]. Despite the effectiveness of CNN-
based models, they still face challenges in accurately detecting 
emotions from images with significant variations in facial 
expression and lighting conditions [2]. Additionally, the 
emotional state recognition challenge demonstrates a wide 
disparity in reported human accuracy, ranging from the low 60% 
to high 80% in the literature, highlighting the significant 
variability in performance [22].  

We propose a novel approach, ESH-Net, that uses 
emotional state heatmaps (ES-MAPs) and convolutional 
neural networks. First, we calculated pairwise distances 
between 468 facial landmarks in 3-D space to generate 
emotional state heatmaps that visually represent the facial 
landmark distributions, enabling a comprehensive analysis of 
expressions. This use of landmark distances minimizes noise 
introduced by significant variation in image lighting 
conditions. Then a neutral baseline is subtracted to calculate 
the relative change in facial landmark distances. These 
measurements are represented in a heatmap form called ES-
MAPs. This innovative approach, which integrates emotional 
state heatmaps and deep learning, has the potential to greatly 
enhance the reliability and precision of facial emotion 
recognition systems. Our proposed model is then trained and 
tested on the Japanese Female Facial Expression dataset 
(JAFFE), Facial Emotion Recognition (FER-2013), and High 
Resolution Facial Expression (HRFE) datasets. 

II. METHODS  

A. Compiling emotional state data sets 
In this study, we utilized two publicly available datasets 

for emotion identification: JAFFE [31][32] and FER-2013 
[30], both downloaded from Kaggle. The JAFFE dataset 
comprises 213 black-and-white facial images capturing facial 
expressions from different individuals. These images are each 
labeled with one of seven fundamental emotions: anger 
(N=30), disgust (N=29), fear (N=32), happiness (N=31), 
sadness (N=31), surprise (N=30), and neutral (N=30). The 
images were obtained under controlled conditions and are 
labeled with their corresponding emotions. Image dimensions 
are of 256 by 256 pixels. The JAFFE dataset’s limitations 
may include low coverage of each emotion as well as the lack 
of color information. The FER-2013 dataset consists of 
29,476 black-and-white facial images sourced from various 
origins. These images are each labeled with one of seven 
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emotions: anger (N=3,995), disgust (N=1,203), fear 
(N=4,097), happiness (N=7,215), sadness (N=4,830), 
surprise (N=3,171), and neutral (N=4,965). FER-2013 
exhibits variations unrelated to expression, such as lighting 
variation, occlusions, and non-frontal head poses. Image 
dimensions are that of 48 by 48 pixels. The FER-2013 
dataset’s limitations may include low resolution of images as 
well as the lack of color information. 

Due to the limitations of JAFFE and FER-2013, we created 
a high-resolution facial expression dataset, HRFE (High-
Resolution Facial Expressions) which includes both high 
coverage of each emotion state, high image resolution, and 
RGB color information, by compiling web images. The 
dataset consists of 1,045 images total. These images are 
labeled with one of seven emotions: anger (N=150), disgust 
(N=138), fear (N=151), happiness (N=158), sadness (N=145), 
surprise (N=143), and neutral (N=160). 
B. Representing raw facial images as ES-MAPs 

The proposed approach for emotion identification in this 
study utilizes MediaPipe Face Mesh [33], a 3D face landmark 
estimation technology. MediaPipe Face Mesh is used to detect 
for a face and extract the 3D coordinates of the estimated 468 
face landmarks. The x- and y-coordinates correspond to the 
point locations in the 2D plane, and the z-coordinate 
represents the depth relative to a reference plane passing 
through the mesh model's center of mass. These landmarks are 
estimated using a grid of 2D points in feature space and 
extracting the features under the sampled points in a 
differentiable manner [33]. We create a transformation matrix 
using the three-dimensional Euclidean distance between all 
pairwise combinations of points. This new matrix is 
normalized using linear normalization and plotted as a 
heatmap (ES-MAP). The generated ES-MAPs for a subset of 
FER-2013 are available at DOI: 10.5281/zenodo.8068171. 
For further details on ES-MAP generation, refer to the Github 
documentations. (https://github.com/emmyyangqy/ESH-Net). 

C. Clustering emotional states  
The advantage of the ES-MAP generation will be 

evaluated with the degree of clustering observed using 
Uniform Manifold Approximation (UMAP) and t-Distributed 
Stochastic Neighbor Embedding (t-SNE). These techniques 
provide insight on the feature representations learned by the 
emotion identification model and compare the differentiation 
and separation of different emotional states between ES-
MAPs and their original facial images.  

 

 
Figure 1.  Simplified flowchart representation of data processing, heatmap  
generation, and ESH-Net model 

 
The consistency of ES-MAPs within the emotion label is 

evaluated by comparing the heatmap color patterns. An 
averaged consensus heatmap for each emotion was generated 
by averaging 50 random heatmaps within the respective 
emotion. Close-match heatmaps are heatmaps where the 
heatmap’s grid-like pattern and colors are located in similar 
locations as those of the consensus heatmaps. 

D. Building the ESH-Net classification model using CNN 
 ESH-Net is based on Convolutional Neural Networks 

(CNNs).  ESH-Net is a five-layer CNN designed using Keras 
with Tensorflow as its backend and was trained using Adam 
optimizer and categorical cross-entropy loss function.  

The architecture was designed with a focus on optimizing 
the network's ability to learn the relationships between the 
input images and the categorical classification outcomes. The 
architecture was selected based on the results of a systematic 
hyperparameter tuning process involving experimentation 
with different architectures, activation functions, and 
optimizers. For further details on the ESH-Net architecture, 
refer to the Github documentations.  

E. Model performance evaluation and validation  
To evaluate model performance, we trained ESH-Net, 

ConvNet, and ResNet using both generated ES-MAPs and 
facial images (control) as input. We conducted 10 runs, 
training the model on HDFE, FER-2013, and JAFFE. The 
training and testing data was randomly split with a 3 to 7 ratio 
respectively for each dataset. Each run consisted of 100 
epochs, and final testing accuracy and loss was recorded at the 
end of each run.  

III. RESULTS  

A. ESH-Net has higher performance in accuracy compared 
to SOTA methods 

Our proposed ESH-Net system achieved a testing accuracy 
of 75% on the HRFE dataset for the seven universal emotions. 
These accuracy rates surpass the model accuracies achieved 
by other implemented state-of-the-art methods. Our proposed 
model is compared to ConvNet [21] and ResNet [6] with 
various datasets. Table 1 and Table 2 show the comparison 
results between the state-of-the-art models and our proposed 
system.  

The use of ES-MAP for training is superior to the use of 
facial images (control) in HRFE and FER-2013 data sets, 
while inferior for the JAFFE data set. Overall, Our ESH-Net 
outperforms ConvNET in all cases, expect when trained on 
FER-2013 facial images, whether we use ES-MAP 
representations or not, suggesting the overall improvement of 
our methods.  

TABLE I.  TESTING ACCURACY WITH ES-MAP 
 

Dataset 
Emotional State Heatmaps (ES-MAP) 

ESH-Net (ours) ConvNet ResNet50 

HRFE 0.75 ±0.01 0.43 ±0.06 0.68 ±0.02 

FER-2013 0.66 ±0.01 0.62 ±0.01 n/a 

JAFFE 0.92 ±0.01   0.79 ±0.08 n/a 



TABLE II.  TESTING ACCURACY WITH CONTROL 
 

Dataset 
Facial Images (Control) 

ESH-Net (ours) ConvNet ResNet50 

HRFE 0.55 ±0.02 0.50 ±0.04 0.65 ±0.01 

FER-2013 0.56 ±0.01 0.62 ±0.01 n/a 

JAFFE 0.91 ±0.01 0.75 ±0.12 n/a 

 

 
Figure 2.  Testing Accuracy of ESH-Net and SOTA models with ES-
MAP and Facial Images  

 
B. Improved performance on higher resolution images 

Each of these three datasets used for training and testing 
contains images of various dimensions. The HDFE dataset 
contains 700 by 700 pixel RGB images. The FER-2013 
dataset constrains 48 by 48 pixel grayscale images. The 
JAFFE dataset contains 256 by 256 pixel grayscale images.  

The high-resolution images minimized information loss, 
thus containing more detailed and fine-grained facial features 
that might be compromised in lower-resolution images due to 
down sampling or compression artifacts. The increased level 
of detail allows the facemesh to capture subtle variations and 
nuances in facial expressions, which are crucial for the 
creation of accurate and nuanced facial feature representation 
by ES-MAPs. This finer level of granularity provided by 
HRFE allowed for the ES-MAP-trained ESH-Net to 
significantly improve its performance on emotion recognition 
tasks compared to the facial-image-trained ESH-Net. 

 

C. Emotional State Heatmap Consistency   

We assessed the consistencies between the generated 
heatmaps and their corresponding averaged heatmap for each 
specific emotion. The detailed figure, Fig. 3, showcases the 
consensus heatmap matrix for all six emotional states, 
accompanied by the closely-matched images and outlier 
images. We observed that there was overall agreement 
among the generated heatmaps for a particular emotion. 
Instances of divergent or inconsistent heatmaps indicates the 
limitations of the system’s ability to overcome noise and high 
variation in facial expression introduced by the data. 

 
Figure 3.  Comparison of averaged consensus emotional state heatmaps 
with closely matched heatmaps and outliers 

  

 
Figure 4.  4a-d: UMAP and t-SNE plots comparing clustering of ES-
MAPs and facial images (control). 4e-f: Two labeled images of 
different emotions having similar facial expressions; FER-2013 
 
C. Emotional state heterogeneity   
To assess the advantage of ES-MAPs over original facial 
images, we conducted clustering analysis using UMAP and t-
SNE. Fig. 4 demonstrates that ES-MAPs exhibit improved 
clustering in UMAP plots but exhibit similar degrees of 
clustering compared to facial images (control) in tSNE plots. 
The UMAP plots of ES-MAPs showed increased distinction 
and separation between emotional states, happiness being the 
most distinct, indicating that ES-MAPs captured subtle 
differences in emotional expression more effectively. These 
findings suggest that the ES-MAP generation approach 
improves the separability of emotional states within the 
HDFE dataset.  Despite increased distinction of clusters for 
different emotions, certain clusters (Anger and Fear) appear 
to overlap in a higher degree. This may indicate that the 
emotion’s expression contains similar facial patterns, and that 
ES-MAP generation cannot significantly capture the 
differences between them.  



IV. CONCLUSION  
In this paper we have presented, ESH-Net, an approach for 

emotion identification in static facial images. MediaPipe 
Facemesh was used for image feature extraction to generate 
ES-MAPs and a CNN neural network architecture was 
employed for classification. This approach surpasses existing 
state-of-the-art solutions and systems in testing accuracy.  

Based on our results, we have shown that the use of ES-
MAPs with ESH-Net can significantly increases the testing 
accuracy on facial emotion recognition compared to the use of 
facial images resulting in better performance. In addition, our 
analysis indicates that the ES-MAPs generate a more 
consistent and reliable representation of emotional states 
compared to the raw facial images. This is evidenced by the 
significant improvement in clustering observed with Uniform 
Manifold Approximation (UMAP). It should be noted that 
many different emotions have very similar facial expressions 
and can difficult to differentiate in both facial image and ES-
MAP formats as seen from Fig. 4e-f. 

Our study demonstrates the potential for ESH-Net to 
significantly improve the accuracy and efficiency of emotion 
identification. We believe that these findings will have 
significant implications for the development of more effective 
and reliable emotion identification systems, with the potential 
to improve a range of applications in areas such as psychology, 
marketing, and human-computer interaction. 

During the analysis of the image labels in this study, it is 
important to acknowledge the possibility of incorrect labeling 
and outlier images. These labeling errors can introduce noise 
and uncertainty into the dataset, potentially impacting the 
performance and reliability of the emotion identification 
system. The FER-2013 dataset used in this study for model 
training and testing has been modified to clear some of these 
incorrect labels.  
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