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Abstract—Hand impairments resulting from neurological 

conditions can significantly affect individuals’ quality of life. 

Home-based rehabilitation programs are promising solutions to 

address these challenges. This study investigated user engagement 

with MusicGlove, a commercially available wearable grip sensor. 

We applied machine learning techniques to classify users based on 

their interaction with the device. We categorized users into ’low’, 

’moderate’, and ’power’ users and found considerable differences 

in device usage. For user adherence prediction after one day of 

device usage, we used a Multi-Layer Perceptron (MLP) deep 

learning model and traditional machine learning models such as 

K-Nearest Neighbors (KNN), Support Vector Machines (SVM), 

and Logistic Regression. The MLP model outperformed other 

models, achieving an average F1-score of 0.68 in cross validation 

and a balanced performance on unseen test data with an accuracy 

of 0.68, precision of 0.66, recall of 0.72, and an F1-score of 0.69 for 

the ’Low’ user class. Our results underscore the need for 

personalized home-based rehabilitation programs and highlight 

the effective use of deep learning algorithms in predicting user 

adherence in home-based digital rehabilitation. This study 

contributes to the growing body of evidence supporting machine 

learning applications in healthcare, particularly in patient 

outcome prediction and treatment personalization. 
Index Terms—In-Home Rehabilitation, Wearable Sensor, 

Machine Learning, Patient Adherence 

I. INTRODUCTION 

According to the World Health Organization (WHO), an 

estimated 255 million individuals live with a neurological 

injury such as stroke, spinal cord injury or traumatic brain 

injury [1]. Individuals living with these injuries often have 

impaired sensorimotor function which can significantly impact 

their overall quality of life [2]. To facilitate recovery of 

sensorimotor function, rehabilitation therapy is generally 

prescribed. However, the number of movement repetitions 

achieved during these therapy sessions is lower than what is 

thought necessary to facilitate the restoration of sensorimotor 

function [3]. Further, there have been several recent initiatives 

taken to shorten the duration of stay of individuals post 

neurological injury [4]. This potentially reduces cost, but also 

further limits the amount of therapy received in clinical settings. 

Home-based therapy has been prescribed to increase the 

amount of therapy an individual achieves, although 

conventional home-based therapy has low adherence rates [5]. 

For example, Peiris et al. found that less than 50% of persons 

with stroke adhered to exercises prescribed in a home-based 

exercise program one month after hospital discharge [6]. 

Several factors possibly contribute to the low adherence rates 

observed such as lack of motivation, physical discomfort or 

perceived lack of time [7]. 

Wearable sensor technologies have been utilized to promote 

in-home rehabilitation amongst various patient populations [8]. 

Beyond providing objective and measurable data for 

monitoring adherence to rehabilitation exercises [9], [10], [11], 

these devices can be gamified to create an engaging therapeutic 

experience, potentially enhancing therapeutic effects. For 

example, our lab and others have used a wearable grip sensor 

to perform hand rehabilitation in the home setting with 

individuals in the chronic phase of spinal cord injury as well as 

individuals in the sub-acute, and chronic phase of stroke [12], 

[13]. In each of these different patient populations use of the 

wearable grip sensor resulted in improvements in hand 

function, and high levels of patient adherence compared to 

conventional home-based therapy options. 

But, despite the promising outcomes demonstrated by prior 

research on wearable sensors, a comprehensive understanding 

of the device-related conditions that improve device usage is 

currently lacking. Power user analysis [14 can offer valuable 

insights in this regard. Power users demonstrate more 

innovative, efficient, and prolonged usage of a device’s features 

compared to other users. By understanding the motivational 

characteristics of power users in the context of rehabilitation 

technology, it becomes possible to develop strategies that 

enhance user motivation, thereby increasing their movement 

practice at home. 

There are several potential indicators to consider when 

studying power user behavior. Prior research has suggested that 

early success in device usage and parameter selection strategies 

can be key determinants of adherence. For instance, a study [15] 

investigated the link between challenge level and perseverance 

in unsupervised home rehabilitation using a sensor-based 

system, FitMe. Over two months individuals who achieved 

high, but not perfect success in the initial week of the exercise 

game demonstrated the greatest perseverance. Further, Sanders 

et al.’s study [9] of 10 subacute stroke patients using 

MusicGlove for home-based hand rehabilitation showed that 
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users commonly adjust the game difficulty based on previous 

success, aiming to maintain high success rates in their practice. 

In the present study, we analyzed usage logs from a large pool 

of anonymous users who utilized a commercially available 

device (MusicGlove) for at-home rehabilitation. Specifically, 

our objective with this large data set was to explore gaming-

related features such as game success for example, that could 

differentiate power users from users with low device usage (low 

users). Afterwards, we utilized these features to develop and 

assess the accuracy of a machine learning algorithm designed 

to classify low users from power users. 

II. METHODS 

A. MusicGlove Overview 

MusicGlove, an FDA-listed medical device, is designed for 

aiding the recovery of individuals with hand impairments 

resulting from neurological injury [16]. The device is a 

wearable grip sensor, featuring six electrical leads strategically 

placed on the five fingertips and near the proximal 

interphalangeal joint on the lateral aspect of the index finger 

lateral (Figure 1). 

MusicGlove allows users to perform five different types of 

grips — a key-pinch grip and opposition of the thumb to each 

of the four fingers. To operate the device individuals, touch the 

sensor on the thumb’s tip to one of the other five sensors, in a 

manner that is coordinated with scrolling notes descending 

along a screen while music plays. 

Additionally, the device offers three different song difficulty 

levels: easy, medium, or hard where increasing song difficulty 

increases the number of notes presented during the song, as well 

as the speed at which they descend along the screen.  

Thus, users are able to adjust their training difficulty by 

changing the number of grip types needed to play each song, 

altering the song difficulty level, or adjusting both parameters. 

MusicGlove offers two different modes for users — "song" 

mode and "session" mode. In the "song" mode, users can 

modify game parameters after each song or replay the same 

song with the same parameters. The "session" mode, on the 

other hand, plays a sequence of songs with the song difficulty 

and number of grips used remaining unchanged, allowing users 

the option of ending the session early and modifying the 

parameters after each song. 

The difficulty and number of grips used remain unchanged, 

allowing users the option of ending the session early and 

modifying the parameters after each song. 

 

B. Data Cleaning 

All users that were identified as test users, clinic users, or 

users with multiple software installations were removed. 

Additionally, entries from users with zero values for song 

duration (length of individual session measured in seconds), or 

notes presented (total number of notes shown during a song) 

were also excluded. We excluded users with zero ’cumulative 

grips’ (the aggregate count of successful grip actions made by 

the user across sessions) to ensure the analysis involved only 

active MusicGlove users. Finally, we removed outliers, 

specifically entries falling below the 5% quantile for both song 

durations and notes presented, considering the resilience of 

quantiles against non-normal distributions. Following the 

application of these filters approximately 10% of users (173 in 

total) were eliminated, leaving 1,516 users. 

 

C. Data Analysis 

Device usage was visualized using a histogram. Further 

analysis of the histogram allowed for the categorization of the 

data into three distinct groups according to the level of activity: 

low users, moderate users, and power users. Low users were 

defined as those who used the device for less than 2 days, 

moderate users were individuals who used the device between 

2-7 days, and power users were those who used the device for 

more than 7 days. 

We generated descriptive statistics (mean and standard 

deviation) for the following metrics: day one success rate 

(number of notes completed / total number of notes presented 

on the first day of device use), difficulty level (# of grip types 

used + song difficulty with easy, medium, and hard 

corresponding to 1, 2, and 3 respectively), weighted score 

(difficulty level multiplied by success rate achieved by the 

user), the total number of grips hit, and the total number of 

sessions played. We performed independent two-tailed t-tests 

with the criteria for statistical significance set to p < 0.05 to 

compare differences between low users and power users. In our 

analysis, we were primarily interested in differentiating 

performance metrics between low users and power users. None 

of the statistical analyses performed included moderate users.  

 

D. Machine Learning Model Selection and Development  

We developed an array of ML models to classify users based 

on MusicGlove usage. All models were implemented in Python 

using the Google Colaboratory (Colab) platform. The 

developed models included a Multilayer Perceptron (MLP), K-

Nearest Neighbors (KNN), Support Vector Machine (SVM), 

and a Logistic Regression model (LR). These models were 

selected because they have shown promising results in diverse 

set classification tasks [17]. 

The architecture of the MLP model consisted of two hidden 

layers with a Rectified Linear Unit (ReLU) activation function,  

Fig. 1. MusicGlove: An interactive device paired with a PC or tablet, 
featuring conductive fingertip pads to detect finger movements. It prompts 
users to perform timed grips in sync with scrolling notes descending on a 
computer screen. 
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which is a common choice due to its computational efficiency 

and ability to mitigate the vanishing gradient problem [20]. The 

model also utilized dropout regularization in between the 

hidden layers to prevent overfitting by randomly setting a 

fraction of input units to 0 during training [18]. The output layer 

used a sigmoid activation function, suitable for binary 

classification tasks. 

Feature Selection: Each model developed in this study 

incorporated the following features: average first-day success 

rate, number of successful grips executed by each user, the total 

number of sessions, and the product of the number of games 

and the user’s weighted score (success rate multiplied by game 

difficulty level). 

The ’average success rate’ provides a snapshot of initial user 

proficiency, the ’number of grip hits’ reflects long-term 

engagement and skill improvement, the ’number of sessions 

played’ indicates user engagement and commitment to therapy, 

and the ’sessions times weighted score’ integrates user 

engagement and performance for a comprehensive assessment. 

The inclusion of these features was driven by their statistical 

significance (p-value < .0001 for each feature, low users vs. 

power users) in the current study, as well as their relevance in 

differentiating users in previous studies [15]. 

Model Training and Optimization: The models were trained 

using Adam, an adaptive learning rate optimization algorithm 

that is particularly effective for problems with large amounts of 

data or parameters [19]. The EarlyStopping callback from 

Keras was employed across all models to halt training when a 

monitored metric stopped improving, conserving 

computational resources, and minimizing overfitting risk. 

Performance Evaluation: The performance of all developed 

models was evaluated using the F1 score and accuracy.  

 

III. RESULTS 

 

A. MusicGlove Device Usage 

After filtering, the sample consisted of 1,516 participants. 

These individuals performed an average of 84 ± 236 sessions 

spread over 11 ± 27 days. Each exercise had an average duration 

of 158.5 ± 28.7 seconds. This led to an average total exercise 

time of 221 ± 625 minutes per user. During this period, users 

completed an average of 7,936 ± 29,847 grip hits. Low users 

represented approximately 29.7% of the total amount of users 

while moderate, and power users represented 40.7% and 29.6% 

respectively. 

Power users on average had a day one success rate of 65.36 

± 25.65 % compared to the 59.18 ± 29.06 % achieved by low 

users (p-value < .001, two-tailed t-test). Additionally, power 

users achieved a larger number of grips hits (3219.02 ± 7497.42 

grips vs. 1253.45 ± 4779.31 grips, respectively, p-value < 

.0001, two-tailed t-test) and games played compared to low 

users (7.36 ± 6.51 sessions vs. 4.22 ± 3.80 sessions, 

respectively, p-value < .0001, two-tailed t-test). 

 

B. Machine Learning Model Results 

During model optimization, we explored various 

hyperparameters. We tested learning rates of 0.001, 0.005, 0.01, 

and 0.05; considered 32 and 64 neurons for the hidden layers; 

employed dropout rates of 0.5 and 0.6 to mitigate overfitting; 

and trained the model using batch sizes of 32 and 64 across both 

100 and 200 epochs.  

The optimal configuration of the MLP consisted of a learning 

rate of 0.01, a neural network of 32 neurons, a dropout rate of 

0.5, a batch size of 32, and 200 training epochs. In comparative 

performance analysis, the MLP model achieved a greater level 

of classification accuracy in cross-validation trials when 

considering F1 score (MLP: 0.68, KNN: 0.63, LR: 0.67, SVM: 

0.61, Table I). Further, it maintained balanced performance 

metrics on unseen test data, resulting in accuracy, precision, and 

recall of 0.66, 0.70, and 0.68 respectively for the ’Low’ user 

class (Table I).  The only category in which the MLP was 

outperformed was precision, with the KNN algorithm achieving 

a precision of 0.70 compared to the 0.68 achieved by the MLP.  

 

IV. DISCUSSIONS 

A. Performance Metrics of Low Users versus Power Users 

Several other rehabilitation studies have shown the 

importance of achieving high levels of success during the initial 

phase of therapy [20]. The results of this study are well aligned 

with the literature, as it was found that success on the first day 

of device usage was correlated with increased amounts of 

device usage. Power users also tended to play more games in 

comparison to low users. Several studies suggest that the 

amount of practice is maximized when the level of challenge is 

optimized. Thus, an interesting direction of future research 

would be to explore how power users were selecting parameters 

to modulate challenges, and subsequently increase their number 

of active days. 

B. Classification of Device Usership Patterns Using Deep 

Learning 

There have been several research groups that have attempted 

to utilize machine learning and deep learning approaches for 

rehabilitation approaches [21]. Here we developed a deep 

learning model as the first step towards developing an 

algorithm that can classify users with low device usage, and 

then subsequently alter game parameters to encourage 

continued use of the device. 

We chose an artificial neural network for its adaptability and 

ability to detect nonlinear data relationships. While rule-based 

algorithms may seem straightforward, they lack the flexibility 

to capture evolving user behaviors or complex data interactions. 

Neural networks inherently understand these complexities and 

refine their insights with more data. 

TABLE I 

 

RESULTS FROM VARIOUS MACHINE LEARNING MODELS 

 
Model NN (MLP) KNN LR SVM 

Accuracy 0.68 0.63 0.67 0.59 

Recall 0.70 0.57 0.67 0.57 

Precision 0.66 0.70 0.67 0.65 

F1-score 0.68 0.63 0.67 0.61 
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The optimized parameters of the deep learning model have 

resulted in satisfactory performance, as indicated by a balanced 

precision and recall reflected in the F1-score during cross 

validation, and a robust model evaluation result on unseen test 

data. This demonstrates the model’s ability to identify and 

support low users, which aligns with the study’s primary goal. 

The precision and recall achieved by the model reveal a 

reasonably balanced trade-off, a factor of critical importance in 

this study. An equal emphasis on precision (how many of the 

users classified as ’low users’ are truly low users) and recall 

(how many of the actual low users we managed to identify) 

ensures that the model correctly identifies ’low users’ while 

minimizing the number of ’false positives’. This balance is 

particularly important in a healthcare context, where both over-

prediction and under-prediction can have significant 

implications [22]. 

 

C. Limitations 

The data in this study is anonymous, limiting our ability to 

analyze how demographic or clinical data influences device 

usage. Additionally, due to this anonymity, it is challenging to 

make any generalizations about the users, as they may not only 

be individuals with stroke but could also belong to different 

populations with impaired hand function. Further, while the 

MLP model boasts robust predictive capabilities, the 

interpretability of the model is challenging. 

The modest F1 and overall accuracy scores reflect the 

challenges inherent in our research context. Our data, sourced 

from a diverse, unpredictable real-world environment, exhibits 

significant variability. These scores, while not ideal, provide a 

realistic baseline for gauging future model enhancements. As 

every user displays unique interaction styles and behavioral 

patterns, there may be additional or latent features not currently 

captured that could enhance classification performance. Future 

iterations of this work will focus on improving feature 

engineering and selection strategies to boost classification 

accuracy. 

V. CONCLUSION 

Utilizing the Multi-Layer Perceptron (MLP) machine 

learning model, we were successful in categorizing users based 

on their device engagement. This predictive capability can 

inform future intervention strategies aimed at enhancing user 

adherence, especially among ’low users,’ by identifying 

individual-specific usage patterns and potential engagement 

barriers. The results from this study contribute to the growing 

body of evidence supporting the use of machine learning and 

deep learning methodologies in healthcare applications. 
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