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Abstract—Large-scale models require substantial computa-
tional resources for analysis and studying treatment conditions.
Specifically, estimating treatment effects using simulations may
require a lot of infeasible resources to allocate at every treatment
condition. Therefore, it is essential to develop efficient methods to
allocate computational resources for estimating treatment effects.
Agent-based simulation allows us to generate highly realistic sim-
ulation samples. FRED (A Framework for Reconstructing Epi-
demiological Dynamics) is an agent-based modeling system with
a geospatial perspective using a synthetic population constructed
based on the U.S. census data. Given its synthetic population,
FRED simulations present a baseline for comparable results from
different treatment conditions and treatment conditions. In this
paper, we show three other methods for estimating treatment
effects. In the first method, we resort to brute-force allocation,
where all treatment conditions have an equal number of samples
with a relatively large number of simulation runs. In the second
method, we try to reduce the number of simulation runs by
customizing individual samples required for each treatment effect
based on the width of confidence intervals around the mean
estimates. In the third method, we use a regression model,
which allows us to learn across the treatment conditions such
that simulation samples allocated for a treatment condition will
help better estimate treatment effects in other (especially nearby)
conditions. We show that the regression-based methods result in a
comparable estimate of treatment effects with less computational
resources. The reduced variability and faster convergence of
model-based estimates come at the cost of increased biased,
and the bias-variance trade-off can be controlled by adjusting
the number of model parameters (e.g., including higher-order
interaction terms in the regression model).

Index Terms—epidemiological models, treatment effects,
Bayesian optimization, agent-based simulation, active learning,
and regression model.

I. INTRODUCTION

Estimating treatment effects for large-scale models is hard.
In reality, this may be an expensive and time-consuming
task. Cranmer et al. [1] discuss possible machine learning
techniques for inference when (simulation) models become
more complex. Agent-based simulation appears as a solution
when conducting experiments is infeasible and allows us to
utilize computational power to circumvent these obstacles.
Shea et al. [2] use agent-based simulation to evaluate treatment

effects for epidemic outbreaks (e.g., COVID-19). Running
agent-based simulation over large populations requires a lot
of computational resources, and it becomes more challenging
when there are multiple treatment conditions to evaluate and
optimize. Hence different techniques are proposed to tackle the
costly computations of population-scale simulation models.

Moreover, this problem is similar to other problems like
Bayesian Optimization (BO), where the objective function
evaluation is costly, and we have few chances to get the
extreme value. Frean and Boyle [3] use BO to learn the
weights of a neural network controller to balance two vertical
poles simultaneously. Another area related to this problem is
active learning, where the machine learns by as few labeled
data as possible with little assistance needed to continue the
task (i.e., no added labeling by a human). This circumvents
the cost of labeling large amounts of data [4]. The problem
also incorporates the concept of exploitation vs. exploration,
where we can run a simulator by changing the parameter θ and
exploiting the information that we get from simulated samples
to lead us to where to explore next. This problem is also related
to Bayesian experimental design, where a utility function is
updated iteratively to improve information from outcomes [5].
Multi-armed bandit (MAB) is another related problem area,
where the goal is to maximize the gain/reward by choosing
limited options out of a set of alternatives. MAB also exhibits
the exploration-exploitation trade-off, i.e., whether to keep
selecting the same arms or to explore potential gains in other
arms [6]. Lastly, our methods touch on the classical problem
of bias-variance trade-off in model selection, where the goal is
to strike a desirable balance between the two often opposing
sources of error.

This paper is structured into five sections. In Section II,
we give a brief introduction to the FRED simulation software
and details about how FRED works, while in its second
part, we discuss the OUD model that we will use to apply
treatment conditions. In Section III, we will demonstrate
different methods we used to estimate treatment effects. In
Section IV, we will discuss the results of our study and its
public health implications. Finally, in Section V, we provide



concluding remarks and give future work directions.

II. PRELIMINARY CONCEPTS

A. FRED simulation framework

FRED (Framework for Reconstructing Epidemiological Dy-
namics) is an agent-based, open-source simulation software
that is developed to simulate the temporal and spatial behaviors
of epidemics. Public Health Dynamics Laboratory (PHDL) in
the University of Pittsburgh School of Public Health is behind
the development of the FRED software. Originally, FRED was
designed to study the dynamics of an epidemic. However,
FRED has shown broader potential for large-scale population
studies that could help in providing a better understanding of
public health treatment conditions and policies. One of the
strong points of FRED is that it has a synthetic population
that is accurately based on the US Census Bureau’s public
use microdata files and Census aggregated data [7].

1) Synthetic Population: Every individual in FRED is rep-
resented explicitly in a designated geographic area. FRED
utilizes the US synthetic population database from RTI Inter-
national [8], where the synthetic population contains detailed
geographically allocated categories. In the synthetic population
in FRED, each agent has an assigned household. Also, there
are assigned agents for each facility. Each household, school,
and workplace is set to a specific region [9].

2) Discrete-time simulation: At every simulation stage, the
agent communicates with other agents who are likely to share
the same daily occupation. For example, agents in the same
school interact with the same colleagues on a daily basis.
Moreover, suppose the agent is infected and interacts with a
susceptible agent. In that case, there is a chance for disease
transmission from the infected agent to the susceptible one.

B. OUD model

The Opioid Use Disorder (OUD) model is developed to
understand the OUD epidemic in the U.S., where opioids
are the leading cause of drug overdose deaths (that includes
prescription opioids, heroin, and synthetic opioids [10]). Jalal
et al. [11] studied the epidemic dynamics over the last 40 years
and reached the conclusion that the present opioid overdose
deaths wave is a part of a long trend that is undergoing over
several decades, hence, stressing the importance of studying
the epidemic dynamics. The OUD model that we use in
this paper was developed by the Public Health Dynamics
Laboratory at the University of Pittsburgh, based on data
provided by the Centers for Disease Control and Prevention
(CDC) as a part of their funded research. OUD model has
explicitly defined transition probabilities between different
states and dwell times for each agent at different states. The
OUD model was simulated over the synthetic population of
Allegheny County, PA.
The model was simulated for the period between Jan 1st, 2016,
to Dec 31st, 2017. The simulation was conducted over this
specific time frame because state transitions of the OUD model
were calibrated with the real data for that time frame.

Fig. 1. State transition diagram for the OUD model.

C. Bayesian Optimization

Although in this study we will not use Bayesian Opti-
mization (BO) directly, it is strongly related to the discussed
methods and worth pointing out briefly. BO is a powerful tool
for finding the extreme point of a function that is expensive to
evaluate. Its best use case is where one cannot obtain a closed-
form expression for an objective function but only can obtain
observations of this objective function [12]. BO contains the
concept of prior belief about the function (hence the Bayesian
part) and the trade-off between exploitation and exploration
of the search space. Similarly, our problem is to maximize
the information we get over treatment condition space while
using as few resources as possible due to the computational
cost of evaluating treatment effects in population-scale agent-
based models.

III. PROPOSED METHODS

In this paper, we will use the OUD model to conduct
our experiment to estimate the effect of different treatments.
The two factors studied in this case are Buprenorphine and
Naloxone. Buprenorphine is a medication used as a treatment
for OUD, and Naloxone is a medication used as an opioid
overdose antidote, i.e., it can reverse the effect of an opioid
overdose. An increase in the availability of Buprenorphine
will increase the probability of agents moving from OUD to
treatment. In contrast, an increase in the amount of Naloxone
will decrease the number of overdose deaths or OD Deaths
(recall figure 1). We selected these two factors as they are
highly effective in increasing individuals in treatment from
OUD and decreasing the number of OD deaths compared to
other possible factors. Each factor has five levels which we
will call (A, B, C, D, E, and F) for Naloxone levels and (a,
b, c, d, e, and f) for Buprenorphine levels, which constitute
25 treatment conditions (combinations of two factors in five
levels each). The 25 conditions can be grouped into five sets
by fixing the Naloxone level. In this study, we will report
the results of the first two sets (i.e., the first ten treatment
conditions).

A. Brute-force method

The brute-force method allocates an equal number of
samples to each treatment condition. Although this method



is definite in providing a solid estimate for each treatment
condition, it requires a lot of computational resources to reach
that result. Moreover, it has an embedded assumption that all
treatment conditions have the same uncertainty, which is not
valid, as some treatment conditions may require more samples
to reach the same confidence interval (CI) width as other
treatment conditions.

B. Greedy method

Estimates of treatment effects are not created equal. The
Greedy method is built on the assumption that some treatment
conditions may require more samples than other treatment
conditions to reach the same CI width. At first, the method
will do an initial equal sample sweep and by conducting a
fixed number of simulation runs. Afterwards, the allocations
depend on the width of the CIs, and the treatment condition
with the widest CI will receive the next batch of samples.
Algorithm 1 shows the procedure we used to implement the
greedy method. Table I shows the mean and CI width for each
treatment condition.

Algorithm 1 Greedy method
Do initial n simulation runs for each treatment condition
initialize flag=0
while flag ̸= 1 do

for j:=1 do 10
Get the largest CI between treatment condition esti-

mation
Assign largest CI to variable max

end for
if max < 5 then

flag=1
else

get n simulation runs for treatment condition with
max

end if
end while

TC Mean CI width number of runs
Aa 2390.35 3.94 2450
Ab 2375.09 3.93 2450
Ac 2361.39 3.97 2300
Ad 2346.5 3.94 2350
Ae 2331.83 3.93 2200
Ba 2383.39 3.95 2350
Bb 2368.21 3.96 2300
Bc 2351.93 3.95 2300
Bd 2339.26 3.96 2300
Be 2323.23 3.97 2350

TABLE I
GREEDY RESULTS FOR DIFFERENT TREATMENT CONDITIONS GIVEN THAT

METHOD STOP AS THE MAXIMUM WIDTH <4, WHERE THE TOTAL NUMBER
OF SAMPLES IS 23350.

C. Model-based greedy method

What if we can use samples simulated for a specific
treatment condition to learn about other neighboring treatment
conditions? In this section, we use the greedy method to

allocate simulation samples to estimate the parameters of a
linear regression model based on all of the simulation samples
conducted in all ten treatment conditions. We will refer to
this method as “model-based greedy”. For example, getting
samples for treatment condition five will not only tell us about
CI over treatment condition five but also provide information
about treatment condition four and treatment condition six.
Equation (1) shows the regression for the treatment effect y
given the level of Buprenorphine x1 and level of Naloxone
x2:

y = β0 + β1x1 + β2x2 + β3x1x2 (1)

Algorithm 2 shows our implementation of the model-based
greedy approach. Practically the method was evaluated using
the CI around each treatment condition where each time a
new batch is added to the selected treatment condition until all
treatment conditions’ CIs are below a predefined threshold. It
is worth noting that our assumption of a straightforward model
(i.e., the linear regression model) may not be the best fit for
the problem but helps us estimate the treatment effects in a
situation where computational resources are costly.

Algorithm 2 Model-based greedy method
Do initial n simulation runs for each treatment condition
Get initial values for regression model parameters
Define threshold as the threshold for acceptable error
Initialize flag=0
while flag ̸= 1 do

Optimize regression model parameters
Do n simulation runs for each treatment condition
Calculate e as the error between regression model pa-

rameters and samples
if e < threshold then

flag=1
end if

end while

Model-based greedy Model-based without interaction
TC Mean CI width # runs Mean CI width # runs
Aa 2390.12 3.96 1200 2388.44 4.5 650
Ab 2375.02 2.82 900 2374.1 3.6 500
Ac 2359.9 2.4 900 2359.52 3.2 500
Ad 2344.82 3.01 900 2344.95 3.4 500
Ae 2329.72 4.22 1550 2330.37 4.1 500
Ba 2384.63 2.58 900 2383.25 3.3 500
Bb 2369.89 1.83 900 2368.68 2.4 500
Bc 2354.78 1.53 900 2354.1 2.1 500
Bd 2339.67 1.9 900 2339.53 2.7 1000
Be 2323.71 2.3 900 2324.95 2.7 500

Total= 9950 Total= 5650

TABLE II
MODEL-BASED GREEDY AND MODEL-BASED GREEDY WITHOUT
INTERACTION MEAN RESULTS FOR THE FIRST TEN TREATMENT

CONDITIONS EFFECTS AND CORRESPONDING CI WIDTH WHERE THE
THIRD COLUMN SHOWS THE NUMBER OF RUNS REQUIRED TO REACH THAT

ESTIMATE.

D. Model-based greedy method without interaction
Recall the bias-variance dilemma of model selection where

we can trade less variability for more bias by using simpler



models that are easier to estimate (more precise but less
accurate). To demonstrate this concept, we remove the inter-
action term from (1) and use the same model-based greedy
method with a simpler model to see how this could affect
the estimates for the treatment effects and their sample size
requirements. Equation (2) shows the regression equation for
treatment condition y given the level of Buprenorphine x1 and
level of Naloxone x2, without the interaction term.

y = β0 + β1x1 + β2x2 (2)

We use the same algorithm as before for model-based greedy,
except for the simplification in the regression model.

IV. RESULTS AND DISCUSSION

To compare the effect of each treatment, we selected OD
Deaths as the target for our experiment. The treatment con-
dition that gets the lower OD Deaths is better. Although the
first method used relatively more extensive simulation runs,
its estimates are similar to the other models, showing that the
latter models could save computational resources critical for
larger simulations (e.g., entire PA state or nationwide) with
more factors and levels to intervene at (i.e., exponentially
more treatment conditions). Specifically, model-based greedy
showed that it got most of the estimates right (with narrower
CI) with almost half of the simulation runs compared to the
greedy method. This also implies that the saving in the number
of simulation runs will increase as the number of treatment
conditions increases. Moreover, using the model-based greedy
with a simpler regression model (with no interaction terms)
showed the potential to improve the bias-variance trade-off
of model selection. The estimation results with model-based
greedy without interaction in table II showed that we can
achieve performance on par with the more complex model
with a small bias in estimating the mean of treatment effects
and almost half the sample size.

V. CONCLUSION

Estimating treatment effects in large-scale models is a
complicated and computationally exhaustive problem. In this
paper, we showed that by using simple techniques, we can save
on computational resources by estimating the same quantities
with fewer simulation runs. We demonstrated three methods
for this: 1) the brute-force method, allocating simulation runs
equally across treatment conditions, 2) the greedy method
that improves on brute-force by allocating to the less precise
conditions first, and 3) model-based greedy, which attempts
to reduce sample size requirements by assuming a regression
model for the effect size across treatment conditions. Finally,
we demonstrated that even a simple model-based greedy
method without interaction terms can achieve comparable
performance with even fewer samples while sacrificing some
accuracy (i.e., bias-variance trade-off). This work can be ex-
tended by: 1) devising better allocation strategies that improve
on greedy by considering the effect of allocations on the
model estimates across all conditions (e.g., using Bayesian
optimization), and 2) improving the bias-variance trade-off of

model selection using more expressive model classes to better
approximate treatment effects, e.g., the Gaussian process has
shown potential as a surrogate for epidemic dynamics which
could be used to estimate treatment effects [13].

DATA AND CODE AVAILABILITY
In this study, we are not able to share detailed data about the OUD model

for contractual reasons. The repository link for the paper’s code can be found
at https://github.com/abdulrahmanfci/intervention-estimation.
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