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Abstract— Drug-Induced Liver Injury (DILI), liver damage
caused by drugs, represents a significant factor contributing to
the failure of clinical trials. Remarkably, the drug development
process, which entails an extensive timeline spanning several
years and incurring costs of billions of dollars to achieve
Food and Drug Administration (FDA) approval, could greatly
benefit from early DILI prediction. Furthermore, through the
utilization of DILI prediction, clinicians can obtain valuable
insights into the potential risks associated with medication,
empowering them to make more informed decisions when
prescribing drugs to patients. We employ Graph Neural
Networks (GNNs) to predict DILI based on drug structures.
GNNs consist of node aggregation, which gathers node
representations, and graph pooling, which compiles node
representations to portray the graph as a single vector.
While the graph pooling method built on Set Transformer
outperforms existing techniques, we identify a limitation: Set
Transformer uses a random seed vector as the query vector
that cannot differentiate between graphs of varied structures.
Moreover, it potentially lacks expressiveness, as it is randomly
defined without prior knowledge and relies on a limited
number of seed vectors. To overcome the issues, we introduce
Molecular Transformer that employs unique molecular
representations as the query vectors. We find that using drug
toxicity information extracted from relevant knowledge-bases
as the query vector yields the best performance.

I. INTRODUCTION

Drug-Induced Liver Injury (DILI), damage or injury to the
liver caused by medications or drugs, stands as a significant
cause of clinical trial failures [4]. Notably, the drug devel-
opment process, which involves an extensive time frame of
approximately 8.3 years and costs around 1.3 billion dollars
to bring a drug to FDA approval [18], could greatly benefit
from an early prediction of DILI. Furthermore, by utilizing
DILI prediction, clinicians can gain valuable insights into the
potential risks associated with a medication, enabling them
to make more informed decisions when prescribing drugs
to patients. This approach empowers clinicians to assess the
hepatotoxicity risk of drugs, allowing for more cautious and
personalized medication prescriptions. By considering the
DILI potential, clinicians can optimize patient safety and
tailor treatment plans, selecting alternative drugs or adjusting
dosages to minimize the risk of liver injury.

In order to predict DILI risk based on drug structures, we
utilize Graph Neural Networks (GNNs) [6]. Demonstrating
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remarkable performance and potential in a variety of drug
molecule-related tasks, including molecular generation and
property prediction [12], GNNs create molecular representa-
tions based on molecular structural information.

In this paper, we introduce the novel Transformer-based
graph pooling technique, called Molecular Transformer (M-
Transformer), which employs molecular representations as
the query vector and utilizes the attention mechanism [16].
More specifically, M-Transformer generates the query vector
using drug toxicity knowledge-bases and effectively ad-
dresses limitations of previous approaches that rely on a seed
vector as the query vector [8].

In Section 2, we review key principles that underlie GNNs
and discuss methods relevant to our work. Section 3 sheds
light on shortcomings of existing methods and introduces
our novel approach. Finally, in Section 4, we compare the
performance of our proposed methods with that of existing
methods and demonstrate the superiority of our strategy.

II. RELATED WORK

A. Drug-Induced Liver Injury Severity and Toxicity (DILIst)

The Drug-Induced Liver Injury Severity and Toxicity
(DILIst) [15] knowledge-base comprises 1,279 drugs, each
labeled with its potential to induce DILI. By augmenting
precedent knowledge-base DILIrank [3] with other literature
featuring at least 350 drugs characterized with human DILI,
DILIst compiles by far the largest assembled list of drugs
with DILI classification. DILIst contains 768 drugs classified
as DILI-Positive and 511 drugs classified as DILI-Negative.

B. Graph Neural Networks

GNNs are a subclass of deep learning models specifically
designed to handle graph-structured data such as molecules.
Suppose a graph G = {V, E} with node and edge sets V and
E . Each node v ∈ V has the node representation xv ∈ X
(X denotes the node feature matrix), and each edge evu ∈ E
connecting nodes v and u has a edge feature evu ∈ E (E
denotes the edge feature matrix). GNNs primarily consist of
two key components: node aggregation that updates node
representations, and graph pooling that formulates the graph
representation by combining node representations.

Node aggregation The node aggregation involves updating
node representations by aggregating node representations
of neighboring nodes. In this paper, we employ the node
aggregation approach adopted by Graph Isomorphism Net-
works (GINs) [19], which effectively addresses the limited
expressiveness of preceding methods [6] by leveraging the



summation of information derived from neighboring nodes.
As a result, the node representation h
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where N (v) represents the set of neighboring nodes of v,
h
(0)
v = xv and W is a weight matrix.

Graph Pooling Through the graph pooling, node repre-
sentations H(K) ∈ RN×d are combined to generate the
graph representation GraphPool(H(K)) = hg ∈ Rd. Graph
pooling necessitates the preservation of specific properties
like permutation invariance [8], ensuring output consistency
irrespective of input order, and injectiveness [19], the ca-
pacity to differentiate among graphs with varied structures.
Different approaches to the graph pooling exist, including
adding all node representations, known as the sum pooling
[19]. However, the sum pooling has a downside of not
considering the relative importance of individual nodes [2].

C. Set Transformer

Another approach for the graph pooling is utilizing Trans-
former [16]. The self-attention mechanism of Transformer
involves matrix multiplication of query Q ∈ RN×d, key
K ∈ RN×d, and value V ∈ RN×d (Att(Q,K, V ) =
Softmax(QKT )V ) where K and V are node representations
H(K). Set Transformer uses the query matrix with the
randomly defined learnable parameter seed vector Q ∈ R1×d.

Set Transformer(Q,K,V) = LayerNorm(P + rFF(P )) (2)

where P = LayerNorm(Q+ Att(Q,K, V ))

where LayerNorm and rFF denote Layer Normalization [1]
and row-wise FeedForward neural networks, respectively.

III. OUR WORK

A. Motivation: Limitations of Set Transformer

While Set Transformer has been successfully utilized in
the graph pooling and has demonstrated good performances
in various graph-related tasks [2], we have discerned inherent
limitations in this approach.
Injectiveness The attention coefficient results from the ma-
trix multiplication and Softmax function between the seed
vector and node representations, Softmax(QKT ). Denoting
the attention vector produced by QKT as α ∈ RN , the
Softmax operation can be rewritten as: Softmax(αi) =

eαi∑N
j=1 eαj

. Now let eαi = zi, and Softmax(α1) can be
computed as z1

(z1+z2+...+zN ) . If z1 doubles while maintain-
ing the node proportion, the coefficient for z1 becomes

2z1
2(z1+z2+...+zN ) = z1

(z1+z2+...+zN ) . This shows that, even
with an increase in the number of nodes in a graph, if
the graph maintains a constant node proportion, the overall
attention coefficient for distinct node representations remains
unchanged (Figure 1).

Fig. 1. Cases where graph representations produced by Set Transformer are
identical due to same node proportion. ST and NP stands for Set Transformer
and the node proportion, respectively.

Randomness It has been observed that initializing a model
with prior knowledge, rather than randomly, results in better
performance [7]. However, in the case of Set Transformer,
the randomly initialized seed vector used as query, which is
defined independently of the input graph or related tasks.

Diversity DILIst comprises more than 1,200 molecules,
each with an average of 56 atoms. The node representations
produced via node aggregations in GNNs process encode
information pertaining to the subgraphs of each molecule.
When Set Transformer using a seed vector carries out
attention over node representations, it has to process more
than 60k subgraphs through a single seed vector.

B. Proposed Method: M-Transformer
Addressing the limitations of Set Transformer identified in

the previous subsection, we propose M-Transformer. Rather
than utilizing a seed vector with random initial values, M-
Transformer employs the graph representation as query.

Unlike Set Transformer, M-Transformer can distinguish
graphs with different structures by using unique graph rep-
resentation. Assuming two graphs G1 and G2 with distinct
structures, in Set Transformer Q1 and Q2 used as queries
are identical in G1 and G2 (Q1 = Q2). However, in
M-Transformer, queries Q1 and Q2 differ across the two
graphs (Q1 ̸= Q2). As a result, even if the vector ht =
Att(Q,K, V ) is the same in two graphs, the self-loop in the
M-Transformer could lead to two distinct graph representa-
tions (Q1+ht ̸= Q2+ht). Hence, M-Transformer embodies
the injective graph pooling function, enabling differentiation
between two graphs with disparate structures.



TABLE I
SET TRANSFORMER VS M-TRANSFORMER

Set Transformer
Molecular

Transformer

Injectiveness X O

Initialization of

the Query Vector
Random Molecular features

Diversity of

the Query Vector
Maximum K # of molecules (N )

Furthermore, M-Transformer uses the graph representation
as query, providing the molecule-specific representation
different from that of a seed vector with random initial
values. Lastly, rather than relying on a single seed vector,
M-Transformer utilizes molecular representations that are
uniquely created for each graph. As a result, one seed vector
no longer performs attention on all the atoms of every
molecule. Instead, the graph representations generated by N
graphs perform attention on each atom. Table I summarizes
differences between Set Transformer and M-Transformer.

C. Query for M-Transformer

With the vanilla M-Transformer, query is the molecular
representation generated through the sum pooling, the in-
jective graph pooling function [19]. However, the molecular
representation from the sum pooling has a drawback, in that
it relies on the optimization of node representations during
the initial stage of training. To overcome this issue, we adopt
and use the molecule- or drug-level features extracted from
two relevant knowledge-bases as queries.

Drug Toxicitiy knowledge-bases We assume that drug
toxicity correlates with DILI and can greatly assist in
identifying drug structures associated with DILI. To extract
toxicity information of drugs comprising DILIst, we utilized
PubChem BioAssay (PCBA) knowledge-bases [17], which
contains 128 bioassays measured across 400k compounds,
and ToxCast knowledge-bases [11], containing qualitative
results from over 600 experiments conducted on 8k com-
pounds. We trained separate GNNs on each label using these
knowledge-bases and used the predictions as query.

ATC code The Anatomical Therapeutic Chemical Classi-
fication System (ATC) code [10] categorizes drugs based on
their mode of action and chemical properties. Given that the
manifestations of DILI can vary depending on the usage of
the drug, employing ATC codes as query can effectively
encode specific parts of a drug associated with DILI. We
converted the individual levels of the ATC code into one-
hot encodings and applied them to fully connected neural
networks in sequential order, from level 1 to level 4.

IV. EXPERIMENTS

Among the 1,279 drugs in DILIst, we excluded those
that are not small molecules, such as antibodies, and those

TABLE II
PERFORMANCES OF THE MODELS FOR DILI PREDICTIONS

Seed SUM ATC Drug Tox

Only - 0.667 (0.04) 0.676 (0.04) 0.645 (0.04)

Cat - - 0.691 (0.03) 0.676 (0.03)

Att 0.547 (0.04) 0.675 (0.05) 0.693 (0.06) 0.695 (0.06)

without an ATC code. After these exclusions, we performed
predictions on the remaining 1,002 drugs.

A. Setup

For constructions of GNNs, we used PyTorch Geometric
(PyG) [5]. Hyperparameters of GNNs include the number of
GNN layers ∈ {4,20}, batch size ∈ {64,128,256}, activation
function ∈ {ReLU, GELU}, 256 hidden units, learning rate
∈ {1e-04, 1e-05, 1e-06}, and epochs = 100. Fully Connected
Neural Networks to predict DILI with graph representations
consist of 4 layers. Atomic number and chirality are used
as atomic features, and bond type is used as bond features.
We used the ADAM optimizer [14], binary cross-entropy
loss, and the Area Under the Receiver Operating Charac-
teristic (AUROC) as an evaluation metric. We evaluated
the performance on the test set where the validation loss
was minimized. We conducted 5-fold cross-validation and
recorded the average value and standard deviation.

B. Results of the DILIst Prediction

Table II presents the performance of the compared meth-
ods in our experiment. As a baseline, we recorded DILI
prediction outcomes using the graph representation derived
from the sum pooling, ATC code, and drug toxicity informa-
tion, as shown in the first row (Only). We also concatenated
graph representations (Cat) from the sum pooling and ATC
codes (or drug toxicity) to compare the effectiveness of
Transformer (Att). In terms of the columns on Table II, Seed,
SUM, ATC, and Drug Tox indicate a seed vector, the sum
pooling, ATC codes, drug toxicity, respectively.

In our experimental evaluations, we compared the effec-
tiveness of using molecular representations against a seed
vector as query in Transformer. The results clearly indicated
that employing the molecular representation as query could
result in a performance enhancement. First, by observing
the improved performance when using graph representations
produced by the sum pooling as query in M-Transformer,
we demonstrated that adjusting node weights to focus on
specific parts of the graph is more effective than the sum
pooling that equally weights all nodes.

Additionally, we concatenated drug toxicity (or ATC code)
into the graph representation derived from the sum pooling
and observed a performance improvement. This confirms that
augmenting the graph representations obtained from GNNs
with supplementary information positively impacts model
decisions, thereby improving prediction accuracy.

We further compared the results of employing a sim-
ple concatenation approach against using M-Transformer.



Fig. 2. Shapley value measurement results for drug toxicity information

We observed an improvement in performance when M-
Transformer was employed, suggesting that the structural
advantages of M-Transformer surpass those of concatena-
tion methods. Finally, we found that using drug toxicity
information as the query in M-Transformer resulted in the
highest performance. This finding underscores the critical
role that drug toxicity information plays in identifying the
substructures related to DILI in pharmaceutical compounds.

C. Shapley value analysis for DILI prediction results

Upon identifying that drug toxicity information is the most
effective as query, we evaluated a DILI prediction model that
only uses drug toxicity information to analyze the relation-
ship between drug toxicity and DILI. We used Shapley Value
[13] to assess the importance of variables and observe their
influence on model decision-making. Interestingly, we found
that among the 20 most influential variables, five variables
were directly tied to hepatotoxicity. Furthermore, two of the
top five variables specifically pertained to hepatotoxicity.
This discovery not only highlights critical roles that liver-
related toxicity plays in identifying the substructures of drugs
related to DILI but also justifies that the model generated
through our work effectively makes accurate judgments.

Surprisingly, factors considered unrelated to hepatotoxicity
appeared to play an important role in determining hepato-
toxicity. For instance, one of the highly ranked variables,
“NVS TR rVMAT2”, is a protein in the nervous system in-
volved in regulating the release of monoamine neurotransmit-
ters and dopamine [9]. Given that the mechanisms underlying
most DILI cases remain elusive [15], our findings suggest
that examining such influential factors in drug toxicity could
provide a new approach for future research.

V. CONCLUSION

In this study, we have successfully demonstrated that
the incorporation of drug toxicity information within the
Transformer architecture significantly enhances the accuracy
of predictions compared to previous methods. We believe
that our research represents a significant step forward in the
quest for improved pharmaceutical safety and efficacy. We
expect future work that builds on our findings will continue
to drive advancements in the field.
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