
Interpretable Disease Prediction from Clinical Text
by Leveraging Pattern Disentanglement

Malikeh Ehghaghi
Computer Science Department

University of Toronto
Toronto, ON, Canada

malikeh.ehghaghi@mail.utoronto.ca

Pei-Yuan Zhou
System Design Engineering

University of Waterloo
Waterloo, ON, Canada
p44zhou@uwaterloo.ca

Wendy Yusi Cheng
Computer Science Department

University of Toronto
Toronto, ON, Canada

wendy.cheng@mail.utoronto.ca

Sahar Rajabi
Electrical and Computer Engineering Department

University of Tehran
Tehran, Iran

sahar.rajabi@ut.ac.ir

Chih-Hao Kuo
Computer Science Department

University of Toronto
Toronto, ON, Canada

h.kuo@mail.utoronto.ca

En-Shiun Annie Lee
Computer Science Department

Ontario Tech University
University of Toronto
Toronto, ON, Canada

enshiun.lee@utoronto.ca

Abstract—For artificial intelligence (AI) systems to be adopted
in high stake human-oriented applications, they must be able to
make complex decisions in an understandable and interpretable
manner. While AI systems today have grown leaps and bounds
in predictive power using larger datasets with more complex
architectures, existing models remain ineffective at generating
interpretable insights in the clinical setting. In this paper, we
address the challenge of discovering interpretable insights from
the clinical text for disease prediction. For this purpose, we
apply the clinical notes from the electronic health records (EHR)
available in the Medical Information Mart of Intensive Care
III (MIMIC-III) dataset, which are labeled with the interna-
tional classification of diseases (ICD9) codes. Our proposed
algorithm combines interpretable text-based features with a novel
pattern discovery and disentanglement algorithm. Specifically,
our approach encompasses the following: (1) uncovering strong
association patterns between clinical notes and diseases, (2) sur-
passing baseline clustering algorithms in effectively distinguishing
between disease clusters, and (3) demonstrating comparable per-
formance to baseline supervised methods in predicting diseases.
Our results validate the model’s capability to strike a balance
between interpretability and outcome prediction accuracy. By
unveiling insightful patterns between clinical notes and diseases,
our approach upholds a reasonable level of diagnostic accuracy.

Clinical relevance—This paper proposes a novel all-in-one clin-
ical Natural Language Processing (NLP) knowledge base, which
can be applied in healthcare systems to discover interpretable
insights from the clinical text for predicting medical conditions.

Index Terms—Interpretability, Electronic Health Records, Pat-
tern Discovery, Pattern Disentanglement, Clinical Notes

I. INTRODUCTION

The complex and opaque nature of Artificial Intelligent (AI)
systems is often a hurdle to their widespread adoption and
acceptance in high stake human-oriented applications such
as health care. Therefore greater transparency for explaining
predictions and decisions is in demand to meet critical sci-
entific, medical, legal, and social needs [1]. Interpretability
is frequently defined as the degree to which a human can
understand the cause and reason of decisions from domain

knowledge [2]. However, even though some AI models can
also provide various degrees of interpretability, they generally
sacrifice interpretability for predictive power [3].

Therefore, in this paper, we focus on the task of predicting
diseases from clinical text found in electronic health records
(EHR) in an interpretable manner. Although deep learning
black-box models achieve state-of-the-art results [4], their
decision-making process remains challenging to interpret with-
out posthoc analysis as they lack the capability to directly ob-
serve and understand the internal mechanisms of the prediction
model.

Hence, to address the issue of interpretability of EHR,
we created a novel two-stage model (Figure 1), leveraging
interpretable features of text such as topic models [5] and
pattern discovery and disentanglement (PDD) algorithm [6],
to discover strong association patterns, thus revealing their
relationships with the diagnosed disease, and clustering pa-
tients into specific groups. The output is clustering groups
and an interpretable knowledge base. Our method outperforms
baseline supervised and unsupervised algorithms, which were
also trained on topic features. We quantitatively analyzed key-
words in the top 20 topics as well as topic-class associations
to discover some keyword-disease associations.

The main contributions of the paper are threefold: 1) Inter-
pretability: a novel algorithm focusing on word-based features
for interpretation of free-text clinical notes; 2) Unsupervised
Learning: the grouping (i.e., clustering) of records based on
the discovered associations revealing characteristics of records
via unsupervised learning; 3) Knowledge Base: generating a
centralized representation to link the knowledge (hierarchical
clusters), patterns (characteristics of records), and data (pa-
tients’ records) together to show ‘what’ (disease), ‘who/where’
(tracking patient records back) and ‘why’ (discovered patterns)
to interpret the clinical text to aid better decision making [7].
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Fig. 1. The overview of the proposed process for Pattern Discovery and Disentanglement for Clinical Insights

II. RELATED WORK

Existing research in the field of clinical data analysis has
predominantly concentrated on structured data, disregarding
complementary text data [9]. Therefore, there is a need to
explore methods and techniques that can effectively leverage
the wealth of information present in unstructured clinical texts
to enhance clinical decision-making and improve patient care.

Latent Dirichlet Allocation (LDA) [10] is a method of topic
modeling (TM), which has been applied in prior studies to
predict clinical outcomes from the clinical notes in EHRs
[11]–[13]. The topic features cluster terms into a small set
of semantically related groups, which is proved useful in
text classification and categorizing clinical reports [5], [14],
[15]. For example, Horng et al. [16] combined structured and
unstructured data for sepsis prediction using text modeling
involving topic models. Furthermore, Gangavarapu et al. [17]
proposed a vector space and TM-based approach applied to
structure the raw clinical data by exploiting the data in the
nursing notes. Hence, we use TM in this study to transform
unstructured free clinical notes into structured tabular data
with topic features.

With the developments in neural networks, variants of pre-
trained large language models (LLMs) such as bidirectional
encoder representations from transformers (BERT) [18] have
widely been applied to clinical domains (e.g., BioBERT [19],
ClinicalBERT [20]). However, LLMs have been shown to
have issues in the clinical domain, such as failure to interpret
numerical values like body temperature [21], as well as
issues with the misinterpretation of medical-specific negation
(e.g., ”abstinence from alcohol” becomes ”alcohol depen-
dence syndrome”) [8]. Unlike topic models or term-frequency-
inverse document frequency (TF-IDF), a BERT vector does not
contain any explicit semantic information that can be easily
interpretable by a person.

While there have been applications of black-box neural
networks in conjunction with posthoc interpretability methods

on free clinical texts [22], [23], posthoc methods do not
have the ability to directly observe the inner workings of
the prediction model like an all-in-one solution such as PDD
can. For example, Decision Trees can generate a rule set
between features and class labels for interpretable prediction,
but the rules need to be trained by relying on labeled classes.
On the other hand, Frequent Pattern Mining [24], [25] can
discover knowledge in the form of association rules from
relational data [25] [8] but a manual threshold needs to
be set for calculated likelihood, support, or confidence [8].
Furthermore, the discovered patterns may be overwhelmed
[26] by overlapping/redundant patterns, which requires some
posthoc analysis approaches such as pattern pruning or pattern
summarizing [26].

III. MATERIALS AND METHODS

A. Clinical Dataset

In this study, we applied the Medical Information Mart
of Intensive Care III (MIMIC-III) v1.41 dataset, which is a
freely available extensive database comprising de-identified
EHRs about patients admitted to Intensive Care Unit (ICU) of
Beth Israel Deaconess Medical Center between 2001 and 2012
[27]. MIMIC-III includes English clinical notes written in free
text format. Our research focuses specifically on discharge
summaries and the associated International Classification of
Disease (ICD9) codes for each admission.

To examine the pattern-discerning capability of PDD al-
gorithm on clinical text, we only used the top 4 most fre-
quent codes. Increasing the number of ICD9 codes results in
higher data imbalance and decreased prediction performance.
Hence, we may not clearly examine the pattern-discerning
capability of PDD when prediction performance is low [28].
The dataset consists of 11,537 patient records labeled based
on the prevalence of the top four diseases indicated by their
respective ICD9 codes: 414 (chronic ischemic heart disease),

1https://physionet.org/content/mimiciii/1.4/



038 (septicemia), 410 (acute myocardial infarction), and 424
(diseases of the endocardium). The distribution of instances
across the four classes is as follows: 3502 (30.35%) for the
first class, 3184 (27.6%) for the second class, 3175 (27.52%)
for the third class, and 1676 (14.53%) for the fourth class.

B. Preprocessing and Feature Extraction

We first applied the preprocessing pipeline proposed by
Van Aken et al. [8]. We then extracted features from the
clean clinical notes by TF-IDF and TM methods (Details in
Appendix V-A and V-B respectively).

C. Baseline Supervised and Unsupervised Approaches

In order to assess the predictive capability of our method, we
conducted a comparative analysis with baseline unsupervised
(i.e., K-Means) and supervised (i.e., Random Forest (RF) and
Convolutional Neural Network (CNN)) learning models for
the ICD9 prediction task (Details in Appendix V-C). For
evaluating the performance of the models, we divided the
dataset into a 70% train set and a 30% test set. Considering
the imbalanced nature of our dataset, we employed evaluation
methods outlined in [8]. Accordingly, we utilized the ‘Bal-
anced Accuracy’ and ‘Weighted F1-Score’ metrics to evaluate
the effectiveness of the selected models in predicting ICD9
codes.

D. Pattern Discovery and Disentanglement

1) Pattern Disentanglement: Firstly, we convert the values
of numerical features into categorical features by using the
Equal Frequency Discretization2, which distributes the values
into equal size bins. We denote categorical values of features
as Attribute Value (AV) [6].

Secondly, in order to measure the strength of the association
between each pair of AVs (i.e., the specific values of one
attribute co-occurring with the value of another attribute), we
construct an association matrix using the value of adjusted
Standardized Residual (SR) [6] to represent the statistical
weights of the AV pair, which is denoted as SR(AV1 ↔ AV2)
(shorten as SR(AV12)) and calculated by Eqn. (1) below:

SR(AV12) =
Occ(AV12)− Exp(AV12)√

Exp(AV12)

×(1− Occ(AV1)

T

Occ(AV2)

T
)

(1)

where Occ(AV1) and Occ(AV2) are the numbers of occur-
rences of AV; Occ(AV12) is the total number of co-occurrence
for two AVs in a AV pair; and Exp(AV12) is the expected
frequency, and T is the total number of records.

Hence, an association matrix, treated as a vector space, is
generated to represent the strength of associations between
each pair of AVs. Each row of the matrix, corresponding to

2Equal Frequency Discretization is a technique that divides a continuous
variable into equal-sized intervals, ensuring an equal number of observations
in each interval.

a distinct AV, represents an AV-vector with SRs between that
AV associated with all other AVs corresponding to the column
vectors as its coordinates.

Then, we use Principal Component Analysis (PCA) to
decompose the association matrix into principal components
that are ranked according to the weights of the associations
(eigenvalues). We then reproject the principal components
onto the association matrix again. We refer to the reprojected
association matrix as disentangled space. The above process
is called Pattern Disentanglement, which allows us to take
the reprojected components/vectors from PCA and use the
reprojected values as new measurements/criteria to represent
the strength of associations between AVs in different orthog-
onal disentangled spaces. Lastly, in order to obtain only the
significant pairs of AV associations, we filter out statistical
residual values greater than 1.96 in our newly reprojected
association matrix (i.e., association matrix with disentangled
associations)

2) Pattern Clustering: In an unsupervised manner, we
cluster the associations. Typically, the number line of one
projected principal component has two opposite sets of AV.
However, when such opposing sets do not exist, we only
use AV sets from one side of the PC. To reveal further
characteristics of the records of the disentangled patterns,
we separate the above sets into several subsets by clustering
them. The similarity measure we used for clustering is the
percentage of the overlapping records covered by each AV
subcluster, and we denote each AV subgroup by a three-digit
code [#Principal Component (PC), #Attribute Value Group
(Group), #Attribute Value Sub-Group (SubGroup)]. The AV
sets or subsets can reveal the characteristics of the records
corresponding to disentangled patterns in order to provide
statistical evidence for downstream clustering or prediction.
The patient records are obtained according to their particular
characteristics (disentangled patterns) from the AV groups or
subgroups.

3) Output: The output of PDD is organized into a represen-
tational framework (PDD Knowledge Base) with three parts: a
Knowledge Section showing the hierarchical clusters such that
each cluster unveils distinct characteristics of a related group
of records; a Pattern Section listing patterns showing detailed
associations between AVs; and the Data Section listing the
record ID, which links the patient to the knowledge and pattern
sections. This is shown in Table II.

IV. RESULTS

A. Comparison of PDD Classification Performance with the
Baseline Approaches

PDD performance in predicting ICD9 codes is compared
with baseline supervised (i.e., K-Means) and unsupervised
learning (i.e., RF and CNN) models in Table I based on bal-
anced accuracy and weighted F1-score metrics. The results are
reported for four different feature sets containing TF−IDF40,
and TM5,20,30. As for the topic features, we only included the
number of topics with the highest topic coherence.



(a) Unsupervised Methods
TF − IDF40 TM5 TM20 TM30

K-means PDD K-means PDD K-means PDD K-means PDD
Balanced Acc. 0.48 0.45 0.62 0.78* 0.50 0.74* 0.51 0.73*
Weighted F1 0.42 0.41 0.57 0.78* 0.54 0.72 0.56 0.71

(b) Supervised Methods
TF − IDF40 TM5 TM20 TM30

RF CNN RF CNN RF CNN RF CNN
Balanced Acc. 0.81 0.85* 0.62 0.62 0.72 0.70 0.71 0.70
Weighted F1 0.82 0.84* 0.65 0.66 0.74* 0.72 0.73* 0.72

TABLE I
COMPARISON OF ICD9 PREDICTION PERFORMANCE BETWEEN DIFFERENT UNSUPERVISED (A) AND SUPERVISED (B) LEARNING APPROACHES USING

TF-IDF AND TM FEATURE SETS.

(a) Compares two unsupervised methods, K-Means and PDD, on every feature set. (b) Compares two supervised methods, RF and CNN,
on every feature set. In (a) and (b), bold texts represent the best value achieved for a specific metric among all feature sets and methods,
while underlined texts specify the better value achieved for each feature among different methods. ‘*’ specifies the best overall value of

each metric among methods, supervised or unsupervised, for each feature set.

PDD Knowledge Base
Knowledge Space Pattern Space (Attributes i.e., Topics in this study) Data Space

PC Group SubGroup Residual ICD9 Topic 0 Topic 1 Topic 2 ... Topic 6 Topic 7 ... Topic 19 Records ID

1 1 1 19.76 424 [0.01 0.42] [0.03 0.54] [0.03 0.44] ... [0.00 0.01) [0.00 0.04) ... #1,#9,#13,...

2 1 1 24.46 424 [0.01 0.42] [0.00 0.03) ... [0.00 0.08) ... [0.02 0.04) #1,#9,#13,...

1 1 2 9.39 410 [0.01 0.42] [0.03 0.44] ... [0.00 0.01) [0.00 0.04) ... #2,#4,#5,#7,...

2 2 1 15.28 410 [0.00 0.01) [0.03 0.44] ... [0.08 0.47] ... #2,#4,#5,#7,...

1 1 3 26.59 414 [0.01 0.42] [0.00 0.01) [0.03 0.44] ... [0.00 0.01) [0.00 0.04) ... #3,#6,#16,...

2 1 2 33.81 414 [0.01 0.42] [0.03 0.54] [0.00 0.03) ... ... [0.02 0.04) #3,#6,#16,...

1 2 1 50.27 38 [0.00 0.01) [0.00 0.01) [0.00 0.03) ... [0.01 0.31] [0.08 0.47] ... #9,#12,#16,...

Note: PC=Principal Component; Group=Attribute Value Group; SubGroup=Attribute Value Sub-Group

TABLE II
THE PDD KNOWLEDGE BASE WHEN TOP 20 TOPICS ARE USED AS INPUT.

As it is shown in Table I, both supervised learning ap-
proaches outperform the unsupervised learning techniques
when trained on TF-IDF features. One potential reason is that
the top 40 features are selected based on ICD9 classification
performance using feature importance ranking with RF.

It can also be observed that the performance of PDD is
comparable to that of supervised learning approaches when
trained on TM features. Notably, PDD with 5 topic features
exhibits the best performance among all the selected models
trained on various numbers of topic features.

B. Discussion on Interpretability of PDD Model

From a clinical perspective, the generated topic models
reasonably aligned with each ICD9 code. In the model with
20 topics, septicemia, a widespread infection of the body,
was predicted by topics containing relevant words including
‘infection’, ‘bacteria’, and ‘culture’. Topics with words like
‘ventricular’ or ‘aorta’ contributed to the prediction of heart-
related diseases. Additionally, the model was able to discern
the heart-related diagnoses from one another: dividing acute
myocardial infarction (410) from the more chronic and con-
genital diseases (414, 424). The algorithm could have dis-
cerned the words representing severe prognoses or procedures,

such as ‘angioplasty’, ‘emergency’, and ‘death’ were more
correlated with acute myocardial infarction.

Table II shows the partial PDD knowledge base on 20 topics.
In each principal component, two opposite groups are discov-
ered; one ICD9=4XX, which represents heart-related diseases,
and one ICD9=038, which represents septicemia disease. Also,
in the ICD9=4XX group of the first principal component,
we observe three subgroups that could distinguish between
424 (diseases of the endocardium), 414 (chronic ischemic
heart disease), and 410 (acute myocardial infarction), three
different types of heart diseases; while these subgroups were
not discovered using the 5 topic features, which is shown in
Table III in the Appendix. In Table II, you can observe similar
patterns between 424 (diseases of the endocardium) and 414
(chronic ischemic heart disease), like high probabilities in
topics 1 and 2 (cardiovascular/surgery) or low probabilities
in topics 6 and 7 (status/consciousness). In contrast, 038
(septicemia) shows opposite patterns, such as high probability
in topic 7, along with low probabilities in topics 1 and 2.

In this work, we demonstrated that the integration of topic
modeling with PDD presents an interpretable method for ef-
fectively predicting ICD9 diagnoses using unstructured clinical
text. This approach ensures a balance between interpretability



and outcome prediction accuracy, offering insightful patterns
while maintaining reasonable diagnostic accuracy.

V. CONCLUSIONS

In this work, we propose a novel two-step algorithm using
interpretable word-based features with unsupervised PDD to
predict diseases. Our method outperforms K-means, especially
when applied to the dataset extracted by TM features. In
addition, clustering results of PDD based on the discovered
patterns reflects the functional sources of the original dataset
instead of class labels. Our method is a global interpretable
white-box model (from the input, throughput to the output)
that can provide clinicians with an explainable knowledge base
that synchronizes self-correcting classification and clustering
results in summarized and comprehensive forms to provide
interpretability and traceability [7]. For future work, we plan
to compare PDD against popular text interpretability methods.
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PDD Knowledge Base
Knowledge Space Pattern Space (Attributes i.e., Topics in this study) Data Space

PC Group SubGroup Residual ICD9 Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 Records ID
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1 2 1 51.07 38 [0.18 0.42) [0.00 0.03) [0.03 0.13) [0.36 0.97] #35,#53,#77,#80,...

1 2 1 86.06 38 [0.01 0.84] [0.00 0.18) [0.00 0.03) [0.36 0.97] #84,#96,#99,...

1 2 1 56.5 38 [0.01 0.84] [0.00 0.18) [0.03 0.13) [0.36 0.97] #84,#126,#130,...

2 1 1 10.55 424 [0.42 0.97] [0.17 0.94] [0.00 0.07) #1,#63,#176,...

2 2 1 85.89 38 [0.00 0.18) [0.00 0.03) [0.03 0.13) [0.36 0.97] #12,#83,#84,...

3 1 1 18.99 424 [0.42 0.97] [0.00 0.03) [0.03 0.13) [0.00 0.07) #206,#225,...

3 2 1 19.1 410 [0.00 0.01) [0.18 0.42) [0.17 0.94] [0.07 0.36) #8,#64,#75,...

3 2 1 31.56 410 [0.00 0.01) [0.00 0.18) [0.13 0.95] [0.07 0.36) #2,#42,#53,...

Note: PC=Principal Component; Group=Attribute Value Group; SubGroup=Attribute Value Sub-Group
TABLE III

THE PDD KNOWLEDGE BASE WHEN TOP 5 TOPICS ARE USED AS INPUT.

APPENDIX

A. TF-IDF Definition and Implementation

TF-IDF can be computed as:

tf-idf(t,d) = tf(t,d) × idf(t)

where tf refers to the term frequency (proportion of a particular
term t over all terms); and

idf(t) = log
1 + n

1 + df(t)
+ 1

where n is the total number of documents in the set and df is
the number of documents containing the term t.

We set TF-IDF configurations to the default parameter
settings of the TfidfVectorizer feature extraction pack-
age of Scikit-learn library [29] and converted each clinical
note into a vector of TF-IDF features. We determined the
optimal number of TF-IDF features for ICD9 code predic-
tion by employing feature importance ranking with random
forest (RF). We evaluated the performance based on balanced
accuracy and weighted F1-score by training the RF model on
various numbers of top TF-IDF features, ranging from 1 to
50. The results demonstrated an improvement in performance
as the number of features increased, peaking at 40. However,
performance started to degrade beyond that point. Thus, we
selected the top 40 words as the input feature set when utilizing
TF-IDF.

B. Topic Modeling Implementation and Parameter Tuning

1) Topic Modeling: We used models.ldamodel pack-
age of Gensim open-source topic modeling library [30] to
derive the topic features from the clinical notes. To determine
the optimal number of topics, we calculated the coherence
score [31] of the topic clusters across a range of topic numbers,

spanning from 1 to 40. The coherence score peaks when the
number of topics is set to 5, 20, and 30, and therefore, we
only extracted topic features with those respective parameters.

Figure 2 illustrates the coherence score per number of topics
for topic clusters across a range of topic numbers (1-40).
Optimal topic selections are indicated at 5, 20, and 30 topics.

Fig. 2. Visualization of coherence score per k number of topics for topic
clusters derived from MIMIC-III clinical notes with the red dots being the
local maximums for selecting the best k.

C. Baseline Implementations

To implement the PDD algorithm, we utilized the PDD web
interface3. To implement K-Means clustering, we employed
the sklearn.cluster.KMeans package from the Scikit-
learn library [29], using its default parameter setting.

We used the Keras [32] deep learning package written in
Python to implement CNN architecture [33]. The architecture

3http://pdd.uwaterloo.ca/



of the model consists of multiple layers, including an input
layer, a 1D convolution layer, a batch normalization layer,
a dropout layer, and a 1D max-pooling layer. These layers
are then followed by a fully connected classification layer
specifically designed for the ICD9 prediction task. During
the training process, we employ the Adam optimizer with a
learning rate of 0.001. The model is trained over 25 epochs,
with a batch size of 32. To implement the RF model, we
applied the RandomForestClassifier package of the
Scikit-learn library [29] with its default parameter setting.


