
  

  

Abstract—Nowadays, most studies still aggregate electronic 
health records (EHRs) into one record per patient for analysis 
and model development without considering temporal 
information, which is valuable for disease progression and 
outcome prediction. However, EHRs often exhibit sparsity and 
irregularity due to their inherent nature, and data preprocessing 
is needed to extract temporal information in EHRs. It is crucial 
to consider that imputation and aggregation techniques used 
during EHRs preprocessing can introduce artificial and 
unrealistic data, potentially leading to the loss of critical 
information. In this study, we proposed a temporal phenotype 
matrix engineering approach with auxiliary data layers (ADL) 
to extract important hidden information from EHRs. Our 
proposed approach was applied to the early prediction of 
coronary artery disease (CAD), one of the leading causes of 
death worldwide. We evaluated the performance of the long 
short term memory network (LSTM), convolutional neural 
network (CNN), and temporal convolution network (TCN) 
models on the CAD prediction task. Upon applying our proposed 
matrix engineering technique with ADL, we observed a 
substantial improvement, with an AUROC (area under the 
receiver operating characteristic) score of 0.919 ± 0.006 (a 10% 
increase, compared to when no ADL was included, 0.831 ± 0.011) 
in CNN model. In conclusion, this study highlights the benefits 
of the proposed temporal phenotype matrix engineering 
approach with ADL to address the sparsity and irregularity 
inherent in EHRs data. 

Clinical Relevance— 
 Our findings underscore the potential of the proposed 

temporal phenotype matrix engineering approach with ADL for 
enhancing the early prediction of CAD, thereby contributing to 
improved patient outcomes and reduced mortality rates. 

I. INTRODUCTION 

Electronic health records (EHRs) store patient’s medical 
history in a digital format. They contain various types of 
medical data, including patient demographics, diagnoses, 
laboratory and test results, medications, and radiology reports. 
Due to the richness of information, there is significant research 
potential for mining and exploring previously unknown 
correlations between diseases and heterogeneous data [1]. 
Records within EHRs are collected chronologically, making 
EHRs a valuable source of time series data. Nowadays, most 
studies still aggregate EHRs into one record per patient for 
analysis and model development without considering temporal 
information, which is valuable for disease progression and 
outcome prediction. Time series analysis allows for the 
detection of patterns and trends within EHR data, providing a 
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better understanding of disease progression and treatment 
effectiveness over time. Additionally, time series models have 
been widely implemented for forecasting future health 
conditions [2]. The utilization of EHRs has the potential to 
greatly advance the diagnosis and forecasting tasks. However, 
several challenges arise due to the nature of EHRs [1]. One 
such challenge is the irregularity in data collection frequency, 
which depends on the patient's health condition. This 
irregularity can lead to sparse data. 

To addressed these issues, data imputation and aggregation 
are commonly used methods. Various imputation techniques 
were applied to clinical data modeling [3, 4]. However. the 
impact of data imputation on model performance could be 
minimal [5], and its effectiveness depends on the nature of the 
data. In addition, there is a risk to lose critical information 
when applying aggregation. 

We propose a novel temporal phenotype matrix 
engineering technique, which aims to extracts crucial 
information from EHRs. We applied this approach to predict 
coronary artery disease (CAD), a leading cause of death 
worldwide. Early prediction of CAD has shown to have a 
significant impact in reducing mortality rates. 

II. METHODS 

A. Dataset 
The study population comprised of patients who received 

laboratory tests for regular cardiac check-up in Chang Gung 
Memorial Hospitals, between January 1, 2001, and October 13, 
2018. The laboratory tests for regular cardiac check-up 
included T-cholesterol, cholesterol, high density lipoprotein 
cholesterol (HDL-C), glycated Hemoglobin (Hb-A1c), low 
density lipoprotein cholesterol (LDL-C), and at least one C-
Reactive protein (CRP) or high sensitivity CRP between 
2001/01/01 and 2018/10/13. Demographic information (e.g., 
age and sex), diagnosis, and laboratory test results were 
obtained from Chang Gung Research Database (CGRD), 
which is the largest EHR research database in Taiwan. We 
categorized the original diagnosis codes into 283 Clinical 
Classification Software (CCS) diagnosis groups. Subsequently, 
we identified the laboratory tests that were conducted on more 
than 20% of the patients within the study population. A total 
of 80 laboratory tests were included in the analysis. The Chang 
Gung Medical Foundation Institutional Review Board 
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approved this study (IRB no. 201801771B0) and waived the 
requirement for patient consent. 

B. Data Preprocessing 

 
Figure 1. Data preprocessing workflow (a) For early 

prediction, we extracted data prior to the prediciton gap and 
within the exposure period. (b) Next, we segmented the data 
using a defined window period. (c) To tackle sparsity, we 
aggregated the records within each window. 

To addressed the challenges of irregularity, sparsity, and 
high dimensionality in EHR analysis, we proposed a temporal 
phenotyping approach to generate time series data for further 
analysis. 

We first defined the index data as the date of the first 
diagnosis of CAD. For patients who were never diagnosed 
with CAD during the study period, we use the last record date. 
To predict CAD in advance, we defined the prediction gap as 
365 days and included the data prior the defined prediction gap 
for CAD prediction. The exposure period, for example 5 years, 
represents the total length of data included. With this 
information, we retrieved each patient's records within the 
exposure period (Figure 1 (a)).  

Then, we segmented the exposure period into non-
overlapping windows T of length L, which (T*L) is equal to 
the length of the exposure period shown in Figure 1 (b). In this 
case, T is the number of observations and L is the frequency. 
After segmentation, we aggregated the record data for each 
variable within the window period. For diagnosis data, we use 
'0' and '1' to indicate the absence or presence of a recorded 
diagnosis, respectively, within the window period (see Figure 
1(c)). However, representing laboratory test results solely with 
'0' and '1' is insufficient, as these results contain valuable 
clinical information. Therefore, when multiple laboratory tests 
results are available within a window period, we choose the 
most recent results to represent the observation for that 

window. Conversely, if there is no record of a laboratory test 
within the window period, we imputed the missing value with 
the normal value for that specific laboratory test. This 
imputation method assumes that patients were in a healthy 
state at that time, thus not requiring the test. In this case, if we 
set T to 1 and L equal to exposure period, we could get the 
most recent record. 

C. Classification neural network 
After data pre-processing, we obtained multivariate time 

series data that captured temporal phenotype within EHR. 
Long-short-term memory (LSTM) is a popular approach of 
multivariate time series data classification task. Unlike the 
traditional Recurrent Neural Network (RNN), the LSTM 
model is designed to overcome the issues of vanishing and 
exploding gradients. This is achieved through the use of forget 
gate, which allows the LSTM to selectively remember 
important information and forget nonsignificant information. 

Time series data can be further transformed into two-
dimensional arrays, facilitating the application of convolution 
neural network (CNN) [6]. We leverage the CNN's inherent 
ability to identify the implicit features and patterns within the 
data. We adopted a basic CNN model architecture, which has 
two convolutional layers, two maximum pooling layers, one 
flatten layer, two fully connected layers, and two dropout 
layers for avoiding overfitting. 

Building upon the concept of applying CNN to time series 
data, we also incorporate the Temporal Convolution Network 
(TCN). Because TCN is specifically designed to address the 
time series discovery problem and shares similarities with 
convolution network, TCN is outperformed RNN models in 
various datasets [7]. TCN consists of three key components. 
First, causal convolutions, enables TCN to process the time 
series data. Second, dilated convolutions are utilized to expand 
the receptive field to contain larger-scope information without 
pooling. Third, the residual connections were employed to 
help the network maintain a sufficient receptive field. 

D. Auxiliary Data Layer (ADL) 
During the data preprocessing step, particularly in the 

process of aggregation and imputation, there is a risk to lose 
critical information and potentially introducing artificial or 
unreal data. To mitigate this issue and ensure a more accurate 
representation of the patients' real health condition within the 
EHR, we designed an Auxiliary Data Layer (ADL). 

One important task in data preprocessing is to impute 
missing values and ensure the data is complete for further 
analysis. However, it's worth noting that missing values can 
sometimes contain valuable information. Study proved that 
providing missing location to the model improve the 
performance of classification [8]. Due to the importance of 
missing location, we included the missing location in the 
proposed ADL. We denote a multivariate time series as 𝑋𝑋 with 
𝑉𝑉 variables and 𝑇𝑇 windows.  

For 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑇𝑇)𝑇𝑇 ∈  ℝ𝑇𝑇×𝑉𝑉 , where for each 𝑡𝑡 ∈
{1, 2, … ,𝑇𝑇} , 𝑥𝑥𝑡𝑡 ∈ ℝ𝑉𝑉,  𝑥𝑥𝑡𝑡 represent the all variables value in 
𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑡𝑡ℎ  window. And for each 𝑡𝑡 ∈ {1, 2, … ,𝑇𝑇} ;  𝑣𝑣 ∈
{1, 2, … ,𝑉𝑉}, 𝑥𝑥𝑡𝑡𝑣𝑣 ∈ ℝ  , 𝑥𝑥𝑡𝑡𝑣𝑣  means 𝑑𝑑 -th variable value in 𝑡𝑡 -th 
window. After denoting the time series data, we denote the 
missing locations as 𝑀𝑀 ,  𝑀𝑀 = (𝑚𝑚1, 𝑚𝑚2, … ,𝑚𝑚𝑇𝑇)𝑇𝑇 ∈  {0, 1}, 



  

where for each 𝑡𝑡 ∈ {1, 2, … ,𝑇𝑇} ,𝑚𝑚𝑡𝑡 ∈ {0, 1}, 𝑚𝑚𝑡𝑡 represent the 
missing status in 𝑡𝑡-th window. And for 𝑡𝑡 ∈ {1, 2, … ,𝑇𝑇} ;  𝑣𝑣 ∈
{1, 2, … ,𝑉𝑉},𝑚𝑚𝑡𝑡

𝑣𝑣 ∈ {0, 1}, 𝑚𝑚𝑡𝑡
𝑣𝑣  represents 𝑣𝑣-th variable in 𝑡𝑡-th 

window missing or not. The function is: 

                               𝑚𝑚𝑡𝑡
𝑣𝑣 =  � 0,   if 𝑥𝑥𝑡𝑡𝑣𝑣 is nan

 1,   otherwise                       (1) 

Apart from considering the missing locations, another 
aspect to address during the aggregation of multiple records 
within a window is the potential loss of valuable information 
and data trends. The conventional approach of discarding all 
records except the least one may result in the omission of 
important insights hidden within the discarded records. To 
solve this issue, similar to handling the missing locations, we 
include the number of records, maximum, minimum, and 
mean values within the window period during aggregation as 
part of the ADL [9].  

By incorporating the ADLs with the original time series 
matrix, we can generate three-dimensional arrays as illustrated 
in Figure 2. Since the window size and number of variables are 
fixed, we appended data along the layer axis. As a result, we 
can get the data in shape of (number of layers, number of 
windows, number of variables). 

 
Figure 2. Process of Appending ADL 

III. EXPERIMENT DESIGN AND RESULT 

After pre-processing the data, we augmented the time-
series matrix by incorporating sex and age information. The 
resulting matrix consists of 365 features. We have a total 8,188 
patients diagnosed with CAD (case group) and 58,562 patients 
never diagnosed with CAD (control group), as shown in 
TABLE I. 

TABLE I.  STATISTICAL DATA IN DEMOGRAPHIC DATA  

 Case Group 
(N=8,818) 

Control group 
(N=58,562) 

P-value 

Sex 
Female 3,553 (40.3%) 28,074 (47.9%) < 0.001 

Male 5,265 (59.7%) 30,488 (52.1%)  

Age 

Mean (SD) 62.8 (11.9) 59.9 (15.6) < 0.001 

Median  
[Q1, Q3] 

63.0  
[55.0, 71.2] 

61.3 
[48.8, 70.9] < 0.001 

 

A.  Experimental Setting 
The data was randomly divided into a training set, 

comprising 80% of the data, and a testing set, comprising the 
remaining 20%. To guarantee robustness, we repeat the 

evaluation process 20 times. The experiments were conducted 
using the NVIDIA GeForce RTX 3060 laptop GPU. The 
environment and hyperparameter are shown in Table II.   

TABLE II.  SETTING AND ENVIRONMENT OF HYPERPARAMETERS IN THE 
EXPERIMENT 

Environment Keras 2.8.0 based on Tensorflow 2.8.0 

Epoch (without ADLa) 10 

Epoch (with ADL) 8 

Optimizer Adam 

Learning Rate  0.0005 

Loss function binary cross-entropy; 
aADL: Auxiliary data layer 

During the data preprocessing stage, various parameters 
need to be determined, such as the exposure period, window 
period, and prediction gap. To identify the optimal 
combination of these parameters, we conducted experiments 
with different configurations. We found that the best 
performance was achieved using the following parameter 
values: an exposure period of 5-year, a window period of 365 
days, and a prediction gap of 365 days.  

B. Comparison of time series data and most recent record 
The results showed that the performance of time series data 

(0.827 ± 0.009) is better than the model developed with the 
most recent record (0.820 ± 0.010). It proved that time series 
data can provide more efficient information in early prediction 
tasks. 

C. Comparison among LSTM, CNN and TCN 
The results indicate that both CNN (0.831 ± 0.011) and 

TCN (0.847 ± 0.009) outperform the LSTM (0.827 ± 0.009) 
models. These findings suggest that convolution neural 
network-based models, specifically CNN and TCN, are more 
suitable for the given task in this case. 

D. Contribution of ADL 

TABLE III.  COMPARATIVE RESULTS OF THE ORIGINAL TIME SERIES 
DATA WITHOUT AND WITH ADL.  

Exposure period = 5-year 
Window period = 365 days 

Predict gap = 365 days 

Model Without ADLa 
With ADL 

Missing Missing & Count 

TCNb 0.847 ± 0.009  0.897 ± 0.005 0.917 ± 0.007 

CNNc 0.831 ± 0.011 0.892 ± 0.005 0.919 ± 0.006 
aADL: Auxiliary data layer bTCN: Temporal convolution network 
cCNN: Convolution neural network 

 

To further investigate the contribution of ADL in 
compensating for data loss during preprocessing, we 
incorporated the ADL into TCN and CNN models. 
Additionally, these models were modified to 3D format 
required by the inclusion of the ADL, as the data with ADL 
becomes three-dimensional arrays. The results, as shown in 
Table III, demonstrate that both the TCN and CNN models 
exhibited an improvement in performance of 6% and 7% when 
only the missing locations were included in ADL, respectively. 
Furthermore, when both missing locations and count of the 



  

records are incorporated into the ADL, the models achieved 
the highest performance improvement of 10% compared to the 
models without ADL. The CNN model, incorporating missing 
locations and count of records in the ADL, achieved the best 
performance among the models evaluated. It attained an 
AUROC (area under the receiver operating characteristic 
curve) of 0.919± 0.006. 

E. Comparison between different predict gaps 
Figure 3 provides insights into the performance of the 

predictive models across different prediction gaps, with a 
focus on exploring how early the model can predict the onset 
of CAD. The primary objective is to identify the optimal 
prediction gap that allows for early prediction and subsequent 
treatment, leading to a reduction in the disease's mortality rate. 
Figure 3 shows a decrease in performance as the prediction gap 
extends. Specifically, there is a noticeable decrease in 
performance when the prediction gap reaches 730 days. This 
suggests that the models are less effective in predicting CAD 
at longer prediction gaps. 

 
Figure 3. Performance between different models in different predict gaps 
among CNN (convolution neural network) and TCN (temporal convolution 
network) model with or without ADL. 

IV. DISCUSSION AND CONCLUSION 

To address the challenges of extracting temporal 
information posed by the irregularity and sparsity of EHR, we 
proposed a temporal phenotype matrix engineering approach 
to obtain multivariate time series matrix with ADL. By doing 
so, we can accurately capture and represent the temporal 
patterns of patients within the EHR. The inclusion of ADL in 
the multivariate time series matrix enables us to incorporate 
additional relevant information and compensate for data loss 
during the preprocessing step. This integration of ADL 
improved the performance of CAD prediction by providing a 
more comprehensive representation of patients' health 
conditions over time. 

We observed that incorporating missing locations into the 
modeling process can significantly improve the performance 
of CAD prediction. That is, missing value within EHR data 
provide valuable information that allows the model to extract 
the most important features and patterns relevant to CAD 
prediction. Additionally, besides considering missing 
locations, we also incorporated other information [9] along 
with the original time-series matrix. We have noticed a distinct 
pattern where the performance of the CAD prediction model 
does not increase significantly when missing locations or 
counts are not incorporated. This observation suggests that 

missing values and the frequency of their occurrences within 
specific intervals hold substantial importance for accurate 
CAD prediction.  

 Our task is early prediction, so we also compare the 
performance of each model in different prediction gaps. The 
performance of the training with ADL decreases when the 
prediction gap length is extended. Although our approach can 
improve performance, while the prediction gap is longer than 
730 days, performance will drop dramatically. So, we could 
try some models which can focus on the early data [10]. 

In conclusion, we proposed a temporal phenotype matrix 
engineering approach with ADL to tackle the challenges of 
irregularity and sparsity in the EHR analysis. By incorporating 
missing location and count as ADLs, we have demonstrated 
significant improvements in the performance of CAD 
prediction. Furthermore, in terms of early prediction, we can 
maintain excellent performance with a predict gap of less than 
one and a half years in our experiments. In CAD prediction, 
many researches also used computed tomography (CT) [11] or 
ECG data [12]. Based on it, we might develop toward multi-
modality in the future.   
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