
  

  

Abstract—The advent of mobile ubiquitous computing 
enabled sensor informatics of human movements to be used in 
modeling and building deep learning classifiers for cognitive 
AI. Expanding deep learning approaches for classifying 
instrumented hand manipulation tasks, especially the art of 
manual therapy and soft tissue manipulation, can potentially 
augment practitioner’s performance and enhance fidelity with 
computer assisted guidelines. This paper introduces a dataset 
of 3D force profiles and manipulation motion sequences of 
controlled soft tissue manipulation stroke pattern applications 
in thoracolumbar, upper thigh and calf regions of a single 
human subject performed by five experienced manual 
therapists. The multimodal 3D force, 3D accelerometer and 
resultant gyro raw data were preprocessed and 
experimentally fed into a multilayered Long Short-Term 
Memory (LSTM) based Recurrent Neural Network (RNN) 
deep learning model to observe sequence classifications of two 
manipulation motion techniques (Linear “Strumming” 
motion and curvilinear “J-Stroke” arched motion) of manual 
therapy performed using a handheld, localizing Quantifiable 
Soft Tissue Manipulation (QSTM) medical tool. Each of these 
motion sequences were further labeled with corresponding 
best practice technique from validated video tapes and 
reclassified into “Correct” and “Incorrect” practice based on 
defined criteria. The deep learning model resulted in 90-95% 
classification accuracy for individual intra-therapist reduced 
dataset. The classification accuracy varied between 78%-93% 
range, when trained with multivariate characteristic feature 
set combinations for the complete spectrum of inter-therapist 
dataset.  

Clinical Relevance — AI informed online therapeutic 
guidelines can be leveraged to minimize practice 
inconsistencies, optimize educational training of therapy using 
data informed protocols, and study progression of pain and 
healing towards advancing manual therapy.  
 

Keywords—Motion Sequence Classification, Long Short-
Term Memory, Recurrent Neural Networks, Deep Learning.  

I. INTRODUCTION 

Human behavior studies have been a field of research in 
the domain of kinesiology for decades. Human reflexes in 
response to stimuli for environmental perception, self-
adaptation and maneuvering define the state of actions in 
human activities. Mathematical computation of human 
motion states has been possible by analyzing multivariate 
sequential outputs of modern-day inertial sensors integrated 
in wearables or handheld tools recording associated 
activities. Triaxial force sensors enable tactile perception [1] 
of textures and allow pressure adjustments in manipulation 
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tasks using haptic feedback [2]. Deep learning techniques 
have crept in popular health monitoring applications ranging 
from physical exercise tracking with gait recognition [3] to 
computer assisted rehabilitation using exoskeletons [4], and 
developing data informed assistive intelligence in body 
sensor networks [5]. In context, Convolution Neural 
Networks has proved to achieve promising results in video-
based activity recognition [6] with 3D depth information. 
Furthermore, Recurrent Neural Networks has performed 
optimally well to classify multimodal time series sequences 
acquired by wearables for human activity recognition [7] 
and speech analysis [8]. 

Similar deep learning techniques can be extended to 
analyze force regimens and temporal motion sequences used 
for instrument-assisted digital manual therapy. The 
Quantifiable Soft Tissue Manipulation (QSTM) medical 
device system is a precursor of this work which includes two 
handheld medical tools (localized [9] and dispersive [10] 
QSTM applicators) for treating musculoskeletal pain 
conditions. Pre-clinical studies using these tools resulted in 
recording the massage routines comprising dynamic force 
profiles and hand motion sequences of soft tissue palpation 
and treatment by a custom-made data requisition software 
(Q-Ware©) [11]. An observational preclinical study of 15 
experienced therapists, each with more than 8 years clinical 
experience in instrument-assisted soft tissue manipulation 
(IASTM) was conducted with institutional review board 
approvals. Each therapist performed two massage motion 
types on the same human subject’s thoracolumbar, upper 
thigh and calf areas of left and right side of body on different 
days for subject comfort. After careful graphical and visual 
assessments individual datasets of 5 therapists were selected 
for multimodal sequence classifications out of 15 therapists. 
These temporal sequences were labelled and fed into a deep 
learning model for identical sequence classifications on 
untrained data. The deep learning model is comprised of 3 
layered Recurrent Neural Networks engaging a Long-short 
Term Memory (LSTM) layer [12], a fully connected layer 
and a soft max layer to perform the training.   

This paper introduces a multivariate time series dataset 
of two fundamental hand manipulation motion sequences of 
manual therapy (namely: Linear “Strumming” straight 
motion and Curvilinear “J-Stroke” arched motion) which are 
further classified based on the technique of application as 
indicated by practice guidelines [13].  A total of four 
fundamental classes with associated motion types and 
techniques indicating “Strumming-Correct”, “Strumming-
Incorrect”, “J-Stroke-Correct” and “J-Stroke-Incorrect” 
were selected and labeled on the inter-therapist dataset based 
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on animated data observations validated by their 
corresponding recorded videotapes. An additional fifth class 
“Random-N/A” is labeled for motions associated to 
preparatory and tool positioning random sequences on the 
subject’s body with no applicable (N/A) techniques. Feature 
extraction of multimodal temporal sequences is usually 
performed by handpicking characteristic attributes based on 
visual observations and requires domain knowledge. 
Supervised deep learning models with higher processing 
capacities serves the purpose by feeding raw sensor data 
sequences. In our case, a combination of features including 
tri-axial force; angular pose defined by Yaw, Pitch and Roll 
sequences; triaxial acceleration and gyro readings of angular 
velocity were experimentally chosen and fed into the deep 
learning model to perform the classification of motion 
sequences and examine its relative accuracy on a prepared 
testing dataset.  

II. DATASET PREPARATION AND LABELLING 

A. Manual Therapy Motions and Techniques 
The mentioned manipulation motion types linear 

“Strumming” motion and curvilinear “J-Stroke” arched 
motion with their characteristic multimodal data sequences 
of triaxial force, acceleration and gyro data are shown in Fig. 
1(a)-(d) and Fig. 1(e)-(h), respectively. Strumming refers to 
the back-and-forth longitudinal traversal (Fig. 1(a)) of the 
tooltip along or across the muscle fibers palpating ridges or 
rocky subsurface anatomies of the fascia. Whereas the “J-
Stroke” indicates a force sustained 90⁰ turn on the skin 
surface from the axial to transverse directions of muscle 
fibers engaging stimulations and blood flow in different 
underlying muscles and connective tissues. Hence, these 

two soft tissues manipulation motion sequences are 
fundamental for the localized QSTM applicator tool in 
treating musculoskeletal pain. However, manipulation 
motion sequences using the dispersive QSTM applicator 
[14] is beyond this paper’s scope.     

B. Visual Data Observations and Labelling 
The Dataset prepared from the preclinical study includes 

performed fundamental “Strumming” linear and “J-Stroke” 
turning motions using the localized QSTM applicator by 
several practitioners (of which best five were chosen) on 
three body regions (lower back, upper thigh and calf) of both 
left and right side of the subject’s body. In total, every 
practitioner performed 12 trials, each of 15 seconds for each 
individual manipulation motion. Graphical observation of 
the triaxial force data (Fig. 1(b)) of the “Strumming” motion 
sequence represents one-to-one mapping of the local 

 

 
Figure 1. Manipulation motions of Manual Therapy using the localized QSTM applicator following the Strumming and “J” type turn sequences and 
their corresponding multichannel data depicting correct and incorrect techniques of practice. 

 
(a)                                        (b) 

Figure 2. Animation viewers (a) Helper Orientation Viewer (MATLAB) 
to view the Euler Angles or quaternions of angular pose of the motion 
sequence. (b) The Arrowhead denotes the magnitude of compressive force 
and the arrow tilts and grows based on the resultant force magnitude. 



  

compressive force maxima with corresponding local lateral 
or longitudinal force max or mins respectively. However, a 
visible phase difference (Fig. 1(f)) along the planar forces is 
noticed along the graphical representations of the J-Type 
turning motion sequences. The correct techniques of 
practicing these motions engage a ramped up sustained 
pressure on and off, back and forth the linear or curved 
trajectories, respectively, without losing contact of the 
tooltip with the skin for the complete trial time. The practice 
sequences of correct manipulation techniques are well 
represented by tri-axial force charts in Fig. 1(c) and 1(g) for 
Strumming and J-Stroke motions. If the contact of tooltip 
and skin breaks during the motion cycle, then it is considered 
as incorrect technique of performing the motion sequence. 
The overlap of triaxial-force data at the zero-crossings of 
every sequence cycle indicates tooltip-skin contact releases 
and are denoted by the dashed yellow circle in respective 
force charts of Fig. 1(d) and 1(h) representing incorrect 
techniques of practice. 

Hence for labelling the dataset with respective motion 
type and technique we manually approached the leave one 
out cross validation (LOOCV) [15] process by animating the 
raw data. Two animations – one for the angular pose using 
Helper Orientation Viewer of the Sensor Fusion Toolbox in 
MATLAB for assessing the motion type shown in Fig. 2(a); 
and another custom-made 3D reaction force vector 
animation using Plot3() function to visualize the tooltip-skin 
contact release shown in Fig. 2(b), determining the 
technique’s correctness, were performed. These animations 
were further validated by their corresponding videotapes 
recorded during data collection. The animations   assisted in 
identifying the state change timestamps both visually and 
graphically for individual motion sequence types and 
techniques in the raw datafiles. Subsequently, each 
datapoint on every timestamp was labelled with their 
respective categorical classes, forming a total of five classes. 
Thus, two motion types and two techniques make a 
combination of four classes “Correct Strumming” and 

“Incorrect Strumming”; and “Correct J-Stroke” or 
“Incorrect J-stroke”, while “Random N/A” class indicates 
the unknown sequences which couldn’t be categorized.  

C. Dataset Preparation for Deep Learning 
Deep learning classifiers require the complete dataset to 

split into training and testing data where each training vector 
needs to include feature specimens from all labelled classes 
for optimum convergence of the solver. Raw datafiles of our 
internal dataset included maximum of two classes which 
were either unknown data of “Random N/A” class or any 
one of the other four. Hence, these raw files needed to be 
sorted to form training vectors with all labelled classes. The 
raw input contained high frequency noise, except for the 
triaxial force data, which were significantly eliminated by a 
moving average or rolling mean filter of window size 25 
datapoints. The filtered data were segregated into body 
region specific manipulation motion sequences of both left 
and right sides for five experienced therapists, out of which 
two fundamental motion sequences linear “Strumming” and 
curvilinear “J-Stroke” motions were cross validated from 
graphs, videotapes and vector animations to be labeled as 
correct or incorrect techniques of the fundamental motion 
sequences respectively. Hence, preparation of training 
dataset for the deep learning model was challenging and 
tedious. To compensate for feature specimens from all 
available classes into each training vector, the raw sensor 
data extracted for individual body regions were shuffled 
based on the labelled data and concatenated such that each 
training vector contains adequate proportions of all 5 classes 
of labelled data. Fig. 3 is a visual representation of the 
training and testing vectors of the inter-therapist dataset 
along with their corresponding label distribution and 
proportion statistics for each of the five class labels. A total 
of five training vectors were generated, each of which were 
formed by appending data from at least two identical motion 
sequences of all five individual class labels performed by 
different therapists in different body regions. Whereas the 

        

 
Figure 3. Segregation of the Dataset into training and testing vectors with the corresponding proportion statistics and distributions of the five labelled 
classes in each training and testing vector. The inter-therapist dataset is compiled into five training vectors and one testing vector represented with 
their corresponding labels. Gyroscope readings are considered as feature vector to visually distinguish between “Strumming” and “J-Stroke” motion 
sequence labels as observed from the difference in peak amplitude of the waveforms.    

 



  

remaining unused labelled data was compiled into a testing 
vector to complete the dataset preparation of the learning 
model. The feature vector shown in Fig. 3 represents the root 
mean square of triaxial gyroscope readings (GyroRMS), 
from which the characteristic traits from fundamental   
motion sequences “Strumming Correct” and “J-Stroke 
Correct” can be visually demarcated from the waveform 
amplitudes of colored labelled classes.     

III. DEEP LEARNING MODEL DEVELOPMENT 

Conventional Recurrent Neural Networks suffer from 
cumulatively incremental (exploding) or decremental 
(vanishing) gradient [16] problems associated with the error 
magnitudes of loss function during model training. This 
issue severely impacts the training process as the biases of 
the training vectors are not updated. Tracking for Long- and 
short-term updates of these training vector biases into 
memory cells significantly improves the vanishing and 
exploding gradient problems. Hence, an LSTM layer 
comprising a memory cell unit [17] shown in Fig.4(a) 
overcomes this issue by storing the state of the changing 
gradients. It allows the input gate to retain or change its state 
impacting other connected neurons through the output gate. 

The forget gate enables modulation of the self-recurrent 
connection by remembering or forgetting its last state as 
necessary.  Finally, the classification layer categorizes an 
unknown dataset with predicted classes trained on known 
feature sets. 

The Deep Learning Toolbox of MATLAB is used to 
build the LSTM-RNN classification model where the 
specific layers mentioned in Fig. 4(b) are structured and 
initialized. The sequence input layer is fed with raw data 
signals as input features, transmitted through 200 hidden 
units of the LSTM layer followed by feature classification at 
the fully connected SoftMax layers. Finally, the 
classification layer categorizes an unknown dataset with 
predicted classes trained on known feature sets. 

The hyperparameters of the deep learning models i.e. 
learning rates [18] and drop-out rates [19] severely depend 
on the chosen training options and controls the error 
magnitudes of the loss function during training. The selected 
Adam optimization algorithm [20] which is appropriate for 
large datasets minimizes errors by optimizing the biases for 
training vectors and maximizes accuracy. The gradient 
threshold was set to 1, assisted with training vector 
reshuffling at each epoch for a total of 200 epochs. The 
training was performed on 6GB of dedicated GPU (NVIDIA 

 
                                                         (a) 

 
                                                          (b) 
Figure 4. (a) Memory Cell Unit of a LSTM Layer. (b) Implemented 
Layers of the deep learning LSTM-RNN classification model. 

 
Figure 5. Confusion Matrix of the Predicted and Trained Classes of 
data for individual intra-therapist reduced dataset, training a 
combination of 7 features producing the best class prediction accuracy. 
 

 
                                                                   (a)                                                                                                                        (b) 

Figure 6. (a) Training Progress of the Deep Learning model for 200 epochs with 7 Feature sets (Triaxial Force, Triaxial Acceleration and GyroRMS). 
(b) Confusion Matrix of the Predicted vs Trained Classes of data using a combination of 7 features producing a prediction accuracy of 93.2%. 



  

GeForce GTX 1060) followed by predicting classes of the 
test dataset to achieve classification accuracy of the model.    

IV. EXPERIMENTS AND RESULTS 

The training and testing process was experimentally 
conducted by feeding an escalating combination of 
individual features into the training network to investigate 
the best group of features for suitable classifications.  
Initially features from intra therapist raw data were fed into 
the model to examine the network performance in smaller 
dataset. Intra-therapist data for individual therapist 
comprise of only two known classes either “Random N/A” 
and “Correct Strumming”, or “Random N/A” and “Correct 
J-Stroke” from four raw data files, one for Strumming and 
one for J-Stroke on both left and right sides of the body. 
Hence, data acquired on the left side of the subject’s body 
served as training dataset, while that of the right side of the 
body was assigned for testing the model’s accuracy. Results 
from these experiments proved the model to achieve high 
accuracy in the range of 90-95% prediction rate for a total 
of 7 characteristic feature set training; the best-case 
confusion matrix is shown in Fig. 5.  

These positive results fueled our study to train the 
network on the prepared training dataset of the full inter-
therapist spectrum with five fundamental classes as shown 
in the confusion matrix of Fig. 6(b) with the loss and 
training accuracy of the best trained outcomes in Fig. 6(a). 
The multimodal feature combinations that were 
experimentally selected for training the deep learning 
model on the complete spectrum of inter-therapist dataset 
are enlisted in Table. 1. 

TABLE I.  PERFORMANCE OF LEARNING MODEL BASED ON INPUT    
FEATURES 

Classification Accuracy of the LSTM-RNN Deep Learning Model 
No. of 

Features Features Sets Accuracy Convergence and 
Sensitivity Parameters 

2 Gyro RMS and Force 
RMS 78.2% 

Training Accuracy: 95% 
Loss: 0.1 

  Micro AUC: 0.9198 
Macro AUC: 0.9252 
Mean TPR: 0.8282  

3 Tri axial Forces 
 (X, Y, Z) 84.4% 

Training Accuracy: 93% 
Loss: 0.2 

Micro AUC: 0.9547 
Macro AUC: 0.9548  
Mean TPR: 0.8327 

5 

Tri axial Forces 
 (X, Y, Z); 

Resultant Force 
and 

GyroRMS 

90.0% 

Training Accuracy: 97% 
Loss: 0.1 

Micro AUC: 0.9687 
Macro AUC:0.9544  
Mean TPR: 0.8549 

7 

Tri-axial Force 
(X,Y,Z);  

Tri-axial Acceleration 
(X,Y,Z); 

GyroRMS 

93.2% 

Training Accuracy: 98% 
Loss: 0.15 

Micro AUC: 0.9876 
Macro AUC: 0.9833 

  Mean TPR: 0.8678 

11 

Tri-axial Force 
(X,Y,Z); ForceRMS;  

Angular Pose  
(Yaw, Pitch Roll); 

Tri-axial Acceleration 
(X,Y,Z); 

GryoRMS. 

85.3% 

Training Accuracy: 100% 
Loss: 0.1E-2 

Micro AUC: 0.9432 
Macro AUC: 0.9571 
Mean TPR: 0.8448  

The training experiments proved that the loss function 
errors in most of the experiments converged almost to zero 
as the number of features being fed into the model 

increased. However, the training accuracies for all 
experiments reached a level of 90% – 100% with an initial 
learning rate of 0.01. The sensitivity metrics of the 
prediction results of the deep learning model were 
measured in terms of the Receiver Operator Characteristics 
(ROC), in which particularly the micro and macro Area 
Under the Curve (AUC) of the ROC plots discriminating 
true positive rate (TPR) versus the false positive rate (FPR) 
are reported in Table 1. The prediction accuracy of the 
model trained with combinations of multivariate sensor 
metrics as feature sets improved experimentally by 
escalating the number of characteristic features from two to 
seven as evident from the table. The classification results 
are reliant on critical spatial characteristics of multivariate 
waveform patterns in the sequences. The cross validation of 
the raw data reproducing animations of the motion 
sequences showed great variances in feature attributes. 
Experimental training of the model with derived features, 
in particular angular pose sequences of Strumming and J-
Stroke patterns, produce no significant characteristic 
differences resulting in least prediction accuracy. Whereas 
that of the Resultant Gyro (GyroRMS) feature shows a 
significant change in amplitude for J-Stroke waveforms as 
compared to Strumming waveforms visible from the sensor 
charts in Fig. 1 and training vector proportion statistics in 
Fig. 3. Model training with too many features, especially 
derived features like angular orientation/pose, diminish the 
effect of fundamental attributes contributed by the 
characteristic feature sets (raw sensor data) on the 
prediction accuracy for identical sequence or pattern 
classification. This reveals the reason for the decreased 
accuracy (85.3%) of the model when trained with all 
available features.  Therefore, the resulting deep learning 
model training experiments assist in identifying the best 
combination of feature sets to achieve higher prediction 
accuracy. However, there is a necessity for dimensionality 
reduction using feature transformations for characteristic 
attribute extraction in the ground truth data, as well as 
validating the training network with a validation dataset to 
optimize model performance for real-time classifications.  

V. FUTURE WORKS 

Time series classifications for motion sequence or 
human activity detection involve challenges based on 
characteristic spatiotemporal traits observed in shapes of 
waveforms to classify an identical pattern. In particular, the 
dataset described in this study incorporates observational 
shape variations of the characteristic waveforms based on 
the multiple physical attributes related to both reaction 
force and manipulation motion measurements. Hence, 
fundamental investigation is necessary to improve the 
accuracy of the model performance. An intermediate 
multiscale shapelet transform layer [21] or elastic distance 
tracking to map the peak-valley pairs using Dynamic Time 
Warping [22] may be beneficial to capture the spatial 
characteristics of the waveform patterns which can then be 
fed into our current LSTM RNN architecture with data 
validation vectors to ensure model enhancements.  More 
improvements can be examined by experimenting with the 
shapelets based on reduced multivariate feature sets with 
collectives of transformation-based ensembles (COTE) 
[23] techniques and upgrading the LSTM-RNN 
architecture to Transformer [24] based deep learning 



  

models. Investigation of our current and extended clinical 
dataset with the aforementioned approaches are in place for 
future works to examine the real-time classification of the 
hand motion sequences of therapists during both 
educational training and therapeutic treatment. 

VI. CONCLUSION 

A multi-sensory time series dataset of force-based 
multimodal hand manipulation motions from preclinical 
manual therapy is presented for sequence classifications. 
The dataset was preprocessed, analyzed and segregated into 
training and testing feature vectors to develop a 
classification model using deep learning LSTM RNN 
architecture. A combination of raw sensor data features has 
been introduced for training the deep learning network and 
estimating the model prediction accuracy on the testing 
datasets. The model trained with seven fundamental 
features showed the best performance with classification 
accuracy of 93.2% for the complete spectrum of inter 
therapist dataset. The classification performance can be 
further improved by feature transformations in the 
preprocessing step followed by a validation dataset entry 
during training or approaches mentioned in the future works 
section. Building such deep learning models for digital 
manual therapy opens new horizons in the field for data 
driven AI guided clinical training. AI assisted digital 
therapy can prove to be a practice enhancement tool for 
both novice and experienced therapists curbing the variance 
in therapeutic practice with precision and fidelity. Pain 
affected musculoskeletal areas of the body are susceptible 
to tolerate less dynamic force as compared to non-involved 
regions. Progression of force tolerance and pressure 
endurance can prove to be a tool to track the healing effect 
of pain conditions. Thus, AI assisted digital manual therapy 
is necessary to advance healthcare. 

SUPPLEMENTARY MATERIALS 
The dataset and the code repository for this study is available in the 

GitHub Repository Link: https://github.com/AbhiBjee/Multimodal-
Sequence-Classifications-with-Deep-Learning 
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