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Abstract—Non small cell lung cancer (NSCLC) is the most
common type of lung cancer and is classified into two main
histological subtypes: adenocarcinoma and squamous cell carci-
noma. The identification of the histological subtype is a crucial
step in the diagnosis of NSCLC. RNA sequencing data hold
valuable biological information but may contain missing gene
expression counts, which limit their potential exploitation in
practice. In this work, we address the issue of missing gene
expression data in NSCLC histological subtype prediction from
RNA sequencing. To this end, we propose a pipeline based
on the generative adversarial imputation network (GAIN) for
the generation of plausible imputations of missing data and
tree-based ensemble models for NSCLC histological subtype
prediction. We adopted a nested cross validation scheme for the
evaluation of the classification models. The proposed pipeline
exhibited an outstanding performance with an area under the
receiver operating characteristic curve of 0.98 + 0.03 and an
accuracy of 0.96 + 0.05 obtained with the Light Gradient
Boosting Machine. Experimental results showed that GAIN-
derived imputations are useful to boost classification perfor-
mance. Finally, we used the Shapley Additive Explanations
technique and found a set of genes that were the most relevant
for NSCLC subtyping across different models.
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I. INTRODUCTION

Lung cancer is the leading cause of cancer-related deaths
in the world [1], with more than two million diagnoses and
1.7 million deaths in 2018 alone. The two types of lung
cancer are small cell lung cancer and non-small cell lung
cancer (NSCLC). While the former type proliferates faster,
the latter is much more prevalent and accounts for 85% of
all lung cancer diagnoses [2]. NSCLC is further subclassified
into two main histological subtypes: adenocarcinoma and
squamous cell carcinoma [3]. These two subtypes exhibit
distinct biological characteristics and may have disparate
prognoses [4] and response to treatment [S]. Furthermore,
recent evidence suggests that molecular subtypes of lung
adenocarcima and squamous cell carcinoma present different
immune properties and should be evaluated as a possible
biomarker for immunotherapy [6]. The identification of the
histological subtype of NSCLC is performed in clinical
practice as a crucial step to establish prognosis. Typically, the
evaluation of the histological subtype requires the analysis of
tissue samples on whole slide images by experienced pathol-
ogists. Nevertheless, the manual assessment of histopatholog-
ical tissue is time consuming, labor intensive and requires
technical expertise.
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In the last decade, deep learning approaches have been
proposed in the biomedical field to perform several tasks
based on different types of data, including imaging, clini-
cal and genomics data. These include cancer classification,
disease subtyping, immune profiling and the prediction of
clinical outcomes [7]. One of the recently investigated medi-
cal data types by machine learning experts is transcriptomics
data. RNA sequencing allows to evaluate the quantity of
ribonucleic acid in a sample and gives insight into the cellular
transcriptome. It allows to quantify gene expression using
high throughput sequencing methods.

Nevertheless, one of the major challenges in the analysis
of medical datasets, particularly RNA sequencing, is han-
dling missing data. Missing gene expression counts in RNA
sequencing may occur due to disproportionate polymerase
chain reaction amplifications or the breakdown of RNA
during library preparation. Discarding missing values is often
detrimental to the performance of downstream tasks as it
leads to the loss of valuable information.

In this work, we propose a pipeline that tackles the
problem of missing expression counts in RNA sequencing for
the prediction of NSCLC histological subtypes. To this end,
we leverage generative deep learning to provide plausible
imputations of the missing RNA sequencing reads and eval-
uate its benefit in NSCLC subtyping. The proposed pipeline
requires no manual feature selection, allowing to holistically
evaluate gene interactions. We finally interpret the model’
predictions by analyzing the most impactful genes for the
prediction of the histological subtype.

The remainder of the article is structured as follows:
Section II explains the generative imputation-based pipeline
for NSCLC subtyping. Section III describes the results
of the proposed pipeline and provides an analysis of the
most salient genes in subtype prediction. Finally, section IV
summarizes the main contributions of the study.

II. MATERIALS AND METHODS
A. Dataset

This study was performed on the public NSCLC Radio-
genomics dataset [8]. The dataset comprises 211 NSCLC
patients in total. Patients were included if: (1) RNA sequenc-
ing was available, (2) clinicopathological data, including the
histological subtype, was provided. For RNA sequencing,
reads alignment to the human genome was performed and
expression calls were determined in each sample using
Fragments Per Kilobase of transcript per Million mapped
reads (FPKM). Amongst the 22,126 genes included in the
dataset, expression values of 19,342 genes were available.



RNA seq dataset

c11 | c1,2 ?

C2,1 ? €23

v

« N
Data Random noise Mask
C151) C1,2 0 0 0 N1,3 1 il 0
2,1 0 2,3 0 N2,2 0 1 0 1
v
Hint Imputed data
0.5 1 0.5 C1,1 €12 €1,3
1 0 05 €1 | €2 | 3
-
»
e apirmi Classification of
Discriminator
NSCLC subtype
v v

Adenocarcinoma
vs
Squamous cell carcinoma

Predicted mask

P1,1 P12 P13

P2,1 P2,2 P2,3

Fig. 1. Proposed pipeline for NSCLC subtyping from RNA sequencing
with GAIN-generated imputations of missing gene expression counts. For
simplicity, three gene counts of two patients are represented in the figure.

Moreover, missing data existed in 14,074 of the available
genes.

After applying the inclusion criteria, 127 patients were
included in this work. The ensuing cohort comprised 31 lung
squamous cell carcinoma lesions and 96 lung adenocarci-
noma lesions.

B. Generative imputation of missing gene expression values

In this work, we propose to generatively impute missing
values in the RNA sequencing dataset by training a Gen-
erative Adversarial Imputation Network (GAIN) [9] (Figure
1). GAIN is a variation of the Generative Adversarial Net-
work (GAN) that was conceived for generative imputation
of missing data. As in the traditional GAN model, the
two major components of GAIN are the generator and the
discriminator networks. The generator is trained to produce
reasonable imputations of missing values within the dataset
whereas the discriminator is trained to distinguish between
original and imputed values. The generator takes as input
the original data, a random noise and a binary mask. The
mask enables the generator to distinguish between observed
(1) and missing (0) data and allows it to generate plausible
imputations of the missing data, while keeping the original
observations unaltered. The discriminator attempts to predict
the binary mask, taking as inputs the imputed data produced
by the generator and a hint matrix. The latter provides partial
information on the mask to the discriminator and ensures
that the imputations produced by the generator follow the
actual data distribution. GAIN is trained iteratively: at each
iteration, the discriminator weights are updated to maximize

the probability that it predicts the mask and the generator is
adversarially trained to minimize this probability.

The objective function is therefore represented by a min-
max problem as follows:
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where G is the generator, D the discriminator, /E\ the cross-
entropy loss function, M the actual mask and M the mask
predicted by the discriminator.

In this work, the generator and discriminator are fully
connected neural networks with 3 layers each, of respective
dimensions N x 2, N and N, where N is the number of
features. Due to memory constraints, the dataset features
were divided into 3 subsets and generative data imputation
was performed on each subset separately.

C. Imputed RNA-seq data preprocessing

Given the wide range of expression values across different
genes, standardization was performed prior to training the
classification models so as to obtain a null mean and unit
standard deviation. Moreover, the Synthetic Minority Over-
sampling Technique (SMOTE) [10] was applied prior to
training in order to account for the class imbalance. Instances
from the minority class were hence oversampled by a factor
of three using SMOTE technique.

D. Histological subtype classification

In this work, we trained and evaluated six different ma-
chine learning models: decision trees (DT), random forests
(RF), and four gradient boosting ensemble models namely
the extreme gradient boosting (XGBoost), the adaptive boost-
ing (Adaboost), categorical boosting (CatBoost) and light
gradient-boosting (LightGBM) machines. All models were
trained with and without the GAIN-imputed RNA sequencing
dataset. For comparison purposes, we also discarded genes
with missing expression values yielding a feature set of 5,268
genes. The models were subsequently trained using the same
strategy and their performance was compared.

E. Evaluation strategy and experimental setup

For all classification models, we applied a nested cross-
validation (CV) scheme for simultaneous hyperparameter
tuning and model evaluation. An outer five-fold CV was
conducted by first dividing the dataset into five folds: four
folds were used for training and the fifth for testing. More-
over, an inner three-fold CV was performed on the training
folds in order to find the optimal hyperparameters of each
model. A grid search was hence conducted on the models’
hyperparameters then the models were retrained on the four
training folds using the selected hyperparameters before
testing on the fifth fold. The process was repeated five times
so as to cover the entire dataset. All splits performed were
stratified in order to maintain the same proportion of each
class in the training and testing subsets.

The GAIN model was trained for 1000 epochs with a batch
size of 64 and Adam optimizer. Training was performed on



an NVIDIA GeForce GTX TITAN Xp 12GB. The perfor-
mance metrics adopted were the area under the curve (AUC),
accuracy, precision, recall and the F1-score.

F. Model interpretability analysis

In a subsequent step, we attempted to interpret the model’s
behavior by running a post hoc analysis on the model’s
predictions. We used the Shapley Additive Explanations
(SHAP) technique [11] for this purpose. For each feature
(gene), the algorithm computes a Shapley value that reflects
the impact of that feature on the model’s final decisions.
The higher the absolute Shapley value of a given gene, the
more significant its contribution is to the final predictions.
A positive Shapley value encodes a positive contribution
whereas a negative Shapley value represents a negative
impact. In this study, we utilized the Tree SHAP method,
an optimized implementation of SHAP specifically devised
for decision tree-based models, which takes into account the
number of subsets flowing into each node of the decision
trees and has hence a much lower computational complexity.

III. RESULTS AND DISCUSSION
A. Prediction of NSCLC histological subtype

Table I summarizes the nested CV performance of the
different models trained for the prediction of the NSCLC
histological subtype: adenocarcinoma vs squamous cell car-
cinoma. The results show a consistent improvement in the
performance of all the models when trained on the GAIN-
imputed version of the RNA sequencing dataset. In fact,
the decision tree witnessed an important increase in the
AUC from 0.77 £ 0.11 (when discarding genes with miss-
ing values) to 0.91 £ 0.08 (when generating imputations
of the missing values using GAIN model). Furthermore,
models trained on the GAIN-imputed RNA sequencing data
exhibited a much higher precision-recall balance mirrored
by the high Fl-scores (> 0.95). As expected, ensemble
models outperformed the DT with AUCs greater than 0.97
when using GAIN-generated imputations. An improved per-
formance was observed with gradient boosting ensemble
models, especially the LightGBM, XGBoost and CatBoost
models. The LightGBM model achieved the highest F1-score
(F1-score = 0.98 £ 0.03, AUC = 0.98 £ 0.03, accuracy =
0.96 £ 0.05). The best time complexity was also obtained
with the LightGBM as training was faster compared to the
other ensemble models.

In order to demonstrate the importance of the holistic
information acquired when training models on the entire
RNA sequencing data, we also trained the LightGBM model
on a subset of the 100 genes that exhibited the highest vari-
ance across patients. Figure 2 depicts the receiver operating
characteristic curves using the three approaches: (1) when
training the model on the 100 most variant genes, (2) when
discarding genes with missing values and training the model
on the remaining ones and (3) when training the model
on the entire RNA sequencing dataset and using GAIN-
generated imputations. The results show that the LightGBM
had a higher AUC when forgoing the feature selection step
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Fig. 2. Receiver operating characteristic curve of the LightGBM model
when trained on the GAIN-imputed RNA sequencing dataset, without GAIN
imputation and on manually selected genes.

(0.95 £+ 0.03 without feature selection vs 0.90 4+ 0.04 when
manually selecting genes). The AUC was even higher when
using GAIN imputations. Figure 3 shows that a similar
performance boost was observed in terms of accuracy (from
0.86 + 0.06 to 0.96 4 0.05) and F1 score (from 0.67 £+ 0.17
to 0.98 + 0.03).
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Fig. 3. Evolution of the performance of the LightGBM model with different
preprocessing approaches.

B. Feature contribution analysis

Figure 4 depicts the summary plot of the SHAP technique
for the LightGBM model when trained on the GAIN-imputed
dataset. The top 20 genes with the highest Shapley values are
included in the plot. Genes are listed in a decreasing order of
importance from top to bottom (mirrored by their absolute
Shapley values). As shown in the figure, the gene with
the highest importance was the Sphingosine-1-Phosphate
Receptor 5 gene or SIPRS. Sphingosine 1-phosphate is
involved in cell proliferation and S1PR receptors are being
investigated as potential targets for lung diseases and cancer
[12]. Tt is to be noted that a high concordance in the SHAP
results was found between LightGBM and XGBoost models
(not shown) with S1PRS found as top contributing gene



Model GAIN imputation AUC Accuracy Precision Recall Fl-score

DT X 0.77 £ 0.11 0.79 + 0.11 0.57 £ 0.14 0.75 £ 0.17 0.64 + 0.13

v 0.91 + 0.08 0.94 + 0.04 0.95 £ 0.06 0.97 £ 0.05 0.96 + 0.03

RF X 0.97 £ 0.04 0.88 £+ 0.05 0.92 £ 0.11 0.59 £ 0.21 0.69 + 0.17

v 0.97 + 0.05 0.94 £+ 0.05 0.93 4+ 0.07 0.99 4+ 0.03 0.96 £ 0.03

AdaBoost X 0.95 + 0.05 0.90 £ 0.05 0.86 &+ 0.16 0.75 + 0.17 0.78 £+ 0.09
v 0.97 £ 0.04 0.92 + 0.07 0.93 + 0.06 0.97 £ 0.05 0.95 + 0.04

XGBoost X 0.96 £ 0.04 0.87 + 0.05 0.80 £ 0.19 0.75 £ 0.22 0.74 + 0.10
v 0.98 + 0.03 0.94 + 0.06 0.95 + 0.07 0.98 + 0.03 0.96 + 0.04

CatBoost X 0.96 + 0.03 0.87 £ 0.06 0.76 = 0.17 0.82 £+ 0.23 0.75 + 0.12
v 0.98 + 0.04 0.95 £+ 0.05 0.95 £+ 0.07 0.99 + 0.02 0.97 + 0.03

LightGBM X 0.95 £ 0.03 0.89 + 0.05 0.84 £ 0.17 0.75 £ 0.22 0.76 = 0.12
v 0.98 + 0.03 0.96 + 0.05 0.95 £ 0.07 1.00 + 0.00 0.98 + 0.03

TABLE I

PERFORMANCE COMPARISON OF THE DIFFERENT MODELS TRAINED FOR THE PREDICTION OF THE NSCLC SUBTYPES WITH AND WITHOUT

GAIN-BASED MISSING DATA IMPUTATION. RESULTS REPRESENT MEAN £ STANDARD DEVIATION IN NESTED CV. TOP RESULTS ARE SHOWN IN BOLD.

and many genes appearing among the most important in the
two analyses. For instance, BNC1 and LPCAT1 which was
shown to be upregulated in NSCLC, appeared among the
top 5 impactful genes in both models. Other common genes
were HN1B, JAG1, ALOX15B, NDUFA4L2 and Clorf116.
This demonstrates the robustness of the predictions and the
reproducibility of the results with different models.
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Fig. 4. SHAP summary plots of the LightGBM model trained on the GAIN-
imputed RNA sequencing dataset. Top 20 genes are listed in a decreasing
order of importance from top to bottom.

IV. CONCLUSIONS

In this study, we proposed a pipeline based on the GAIN
network and gradient boosting ensemble models for the
prediction of the histological subtypes of NSCLC from RNA
sequencing data. We also provided interpretations of the
predictions using the SHAP technique. Experimental results
show that including all the RNA sequencing genes and
leveraging a generative network to impute missing gene ex-
pressions improved the predictive models’ performance. This

pipeline is an automated, rapid and cost effective tool for
the identification of the histological subtype of NSCLC. In
a future step, we will integratively leverage transcriptomics
data with imaging and clinical data in a predictive pipeline
trained on a multi-institutional dataset.
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