
  

  

Abstract— This paper presents a novel method for predicting 
hemodynamic responses in hemorrhage resuscitation. The 
proposed approach, namely, robust nonlinear state space 
modeling (RNSSM), aims to overcome challenges of identifying 
reliable models using limited and noisy critical care data by 
innovatively integrating autoencoder learning and variational 
Gaussian inference in a unified framework. Simulation results 
demonstrate the initial feasibility and performance evidence of 
the RNSSM approach as a digital twin of an animal study in 
hemorrhage resuscitation scenarios. 
 

Clinical Relevance— Enabling reliable, personalized 
hemodynamic models amenable to the closed-loop control 
design can potentially lead to development of efficient model-
informed precision dosing strategies, promoting patient safety 
and outcomes in critical care. 

I. INTRODUCTION 

Fluid resuscitation is a medical intervention commonly 
used in hypovolemic scenarios to compensate for the lost 
blood volume and stabilize critically ill patients. Fluid 
management is currently ad-hoc and dependent on the 
physician’s style and expertise [1-5]. These ad-hoc protocols 
lack the capability to accurately adjust fluid infusion dosages 
due to their empiric nature, especially in the presence of 
clinical disturbances [6], posing a significant risk of adverse 
effects such as under- and over-dosing. Consequently, 
treatment performance is compromised due to the absence of 
appropriate dosage adjustment tools. 

A few studies have considered the modeling of 
hemodynamic responses in fluid resuscitation therapies [1-3]. 
In [1], a simplified lumped-parameter model replicating 
blood volume responses in different physiological states 
following fluid infusion was presented. In [2], a control-
theoretic, physic-based model of hemodynamic variables, 
including blood volume, cardiac output, and blood pressure 
response, in hemorrhage resuscitation was presented. In [3], a 
cyber-physical fluid resuscitation test bed that included 
hemodynamic responses to blood volume perturbations was 
developed. 

Automated modeling and control methodologies have 
recently received great attention in physiological modeling 
and dosage adjustment [7-12]. To design a model-informed 
dose adjustment tool, an appropriate dose-response model is 
needed, and the success of the control approach is highly 
dependent on the availability of a reliable model. Such a 
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model must (i) be simple enough to be amenable to the 
design of the controller using limited clinical data and (ii) 
make use of limited, noise-distorted, patient-specific clinical 
data with unknown baseline conditions. Development of a 
reliable, personalized hemodynamic model amenable to the 
closed-loop control design remains challenging due to the 
limited, distorted clinical data, large inter- and intra- patient 
variability, and the complexity of modeling physiological 
variables, and this work intends to address it in the context of 
fluid resuscitation.  

Machine learning algorithms have been recently used for 
dose-response modeling [13-15]. In [13], a machine learning 
algorithm was used to predict the dose-adjusted 
concentrations of lamotrigine based on noninvasive clinical 
parameters. In [14], a method that combines model predictive 
control and reinforcement learning (RL) was presented to 
address the challenge of drug administration variability in the 
treatment of renal anemia. A complete literature review 
exploring the use of data mining and machine learning 
techniques for disease prediction using complete blood count 
data was presented in [15]. Most of these models 
predominantly rely on population-based data, limiting their 
applicability to individual subjects. In our previous study 
[16], we designed an individual-based fluid dosing algorithm 
using a model-free RL. While this approach showed 
promising results in fluid management, it required a 
substantial amount of data for training and provided an 
inferior performance in the presence of clinical disturbances. 

To address the aforementioned challenges, this paper 
presents a novel modeling framework namely, robust 
nonlinear state space modeling (RNSSM), for predicting 
hemodynamic responses in hemorrhage resuscitation. The 
proposed approach integrates autoencoder learning and 
variational Gaussian inference (VGI) into a unified 
framework to develop nonlinear state space models that are 
highly amenable to the closed-loop control design from 
limited, noisy critical care data. The goal is to develop 
subject-specific models that can reliably predict mean arterial 
pressure (MAP) responses to fluid infusion in hemorrhage 
scenarios. The RNSSM approach improves (1) model 
accuracy by considering subject-specific characteristics and 
drug attributes and (2) model reliability by accounting for 
uncertainties inherently present in clinical data. 

The rest of the paper is organized as follows: Section II 
describes the proposed methodology leveraging autoencoder 
learning and Gaussian inference for developing RNSSM 
models. Section III presents the results and discussions, and 
Section IV draws the conclusions. 
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II. MATERIAL AND METHODS 

We derive a new methodology to predict robust, 
individualized MAP responses to fluid infusion in 
hemorrhage scenarios. The proposed methodology focuses on 
identifying reliable nonlinear state space models from 
limited, noisy clinical data using machine learning 
algorithms. Consider a multiple-input/multiple-output 
nonlinear state space model (NSSM) in a general form: 

𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘,𝜃𝜃) + 𝑣𝑣𝑘𝑘 
𝑦𝑦𝑘𝑘 = 𝑔𝑔(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘,𝜃𝜃) + 𝜔𝜔𝑘𝑘 (1) 
where 𝑥𝑥𝑘𝑘 represents the hidden state variable in ℝ𝑛𝑛𝑥𝑥, 𝑢𝑢𝑘𝑘 ∈
ℝ𝑛𝑛𝑢𝑢 denotes the observed input, and 𝑦𝑦𝑘𝑘 ∈ ℝ𝑛𝑛𝑦𝑦 represents the 
measured output. The functions 𝑓𝑓(. ) and 𝑔𝑔(. ) capture the 
state transition and output measurement, respectively, while 
𝜃𝜃 ∈ ℝ𝑛𝑛𝜃𝜃 represents a vector of unknown parameters. The 
terms 𝑣𝑣𝑘𝑘 and 𝜔𝜔𝑘𝑘 account for disturbance and measurement 
noise, respectively, both described by Gaussian probability 
density functions. 

We aim to enable reliable, individualized prediction of 
hemodynamics by amalgamating autoencoder learning with 
VGI techniques. 

A. Autoencoder Learning of Nonlinear State Space Models 
Autoencoder is a type of artificial neural network (ANN) 

used for representation learning [17]. It learns how to 
efficiently compress and encode data then learns how to 
reconstruct the data back from the reduced representation to a 
representation that is as close to the original input as possible. 
This is accomplished through a bottleneck in the ANN 
forcing a compressed knowledge representation of the 
original input. The use of autoencoders for learning state 
space models has received great attention recently [18-20] 
due to their capability to impose regular geometry on the 
learned latent space— an abstract space that positions similar 
samples close to each other. Here, we aim to capture the 
intricate dynamics of MAP responses to fluid infusion 
changes using autoencoder learning. The structure was 
adopted from [20] where the autoencoder learns a nonlinear 
state space representation from a given subject-specific 
input/output dataset. Suppose we are given a dataset of 
input/output 𝑰𝑰𝑘𝑘 = {𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑁𝑁,𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑁𝑁}, where 𝒖𝒖𝑘𝑘 ∈
ℝ𝑛𝑛𝑢𝑢 is the vector of inputs (fluid dosages) and 𝒚𝒚𝑘𝑘 ∈ ℝ𝑛𝑛𝑦𝑦 is 
the vector of measured outputs (MAP responses). The 
objective is to find optimal values for functions 𝑒𝑒:ℝ𝑛𝑛𝐼𝐼 →
 ℝ𝑛𝑛𝑥𝑥, 𝑓𝑓: ℝ𝑛𝑛𝑢𝑢 ×  ℝ𝑛𝑛𝑥𝑥 →  ℝ𝑛𝑛𝑥𝑥, and 𝑔𝑔:ℝ𝑛𝑛𝑥𝑥 →  ℝ𝑛𝑛𝑦𝑦 by 
minimizing the following fitting criterion:  

min
𝑒𝑒,𝑓𝑓,𝑔𝑔

ℒ(𝑒𝑒, 𝑓𝑓,𝑔𝑔,𝑍𝑍) =  min
𝑒𝑒,𝑓𝑓,𝑔𝑔

∑ 𝐿𝐿(𝒚𝒚�𝑘𝑘,𝒚𝒚𝑘𝑘)𝑁𝑁
𝑘𝑘=𝑘𝑘0   (2) 

where 𝑒𝑒, 𝑓𝑓, 𝑔𝑔, are the functions describing the encoder, 
bridge, and decoder models, 𝑍𝑍 describes the training dataset, 
𝐿𝐿:ℝ2𝑛𝑛𝑦𝑦 →  ℝ is the loss function, and 𝒚𝒚 and 𝒚𝒚�𝑘𝑘 are the 
measured and predicted outputs, respectively. 

To determine the appropriate nonlinear state space model 
that yields an acceptable mismatch between the predicted 
value, 𝒚𝒚�𝑘𝑘, and the measured value, 𝒚𝒚𝑘𝑘, we need to design a 
suitable ANN architecture for training these functions. 

The autoencoder model, used in this work, consists of 
three main components: (1) A multilayer ANN encoder for 

predicting 𝒙𝒙𝑘𝑘 from 𝑰𝑰𝑘𝑘−1; (2) A multilayer ANN decoder for 
predicting 𝒚𝒚𝑘𝑘 from 𝒙𝒙𝑘𝑘; and (3) A bridge network, also a 
multilayer ANN model, for modeling the function 𝑓𝑓 that 
maps 𝒙𝒙𝑘𝑘 to 𝒙𝒙𝑘𝑘+1. Since direct access to the internal dynamics 
of the system to obtain 𝒙𝒙𝑘𝑘+1  is unavailable, a second 
autoencoder is defined that simultaneously maps 𝑰𝑰𝒌𝒌 to 𝒙𝒙𝑘𝑘+1 
and 𝒚𝒚𝑘𝑘+1 using the same weights as the first autoencoder. 
The following criterion was chosen to train the model:  

𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒,𝑓𝑓,𝑑𝑑

𝛴𝛴𝑘𝑘=𝑘𝑘0
𝑁𝑁−1  𝐿𝐿1(𝒚𝒚�𝑘𝑘,𝒚𝒚𝑘𝑘) + 𝐿𝐿1(𝒚𝒚�𝑘𝑘+1,𝒚𝒚𝑘𝑘+1) 

                   +𝐿𝐿2(𝒙𝒙𝑘𝑘,𝒙𝒙𝑘𝑘+1) + 𝐿𝐿3(𝒚𝒚𝑘𝑘+1,𝒚𝒚�𝑘𝑘+1)                  (3) 
where 𝒚𝒚𝑘𝑘 = [𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑘𝑘] and 𝒚𝒚𝑘𝑘+1 = [𝑦𝑦2,𝑦𝑦3, … ,𝑦𝑦𝑘𝑘+1] are 
the vectors of measured outputs, and 𝒚𝒚�𝑘𝑘 = [𝑦𝑦�1,𝑦𝑦�2, … ,𝑦𝑦�𝑘𝑘], 
𝒚𝒚�𝑘𝑘+1 = [𝑦𝑦�2,𝑦𝑦�3, … ,𝑦𝑦�𝑘𝑘+1], and 𝒚𝒚�𝑘𝑘+1 = [𝑦𝑦�2,𝑦𝑦�3, … ,𝑦𝑦�𝑘𝑘+1] are 
the predicted outputs. 𝐿𝐿1 and 𝐿𝐿2 are the loss functions for 
training the autoencoders and the bridge network, 
respectively. 𝐿𝐿3 is introduced to prevent the error introduced 
by the bridge network 𝑓𝑓 from being amplified by the 
decoder.  

B. Variational Gaussian Inference (VGI) 
State space models based purely on autoencoders, as 

identified in part A, fail to account for external uncertainties 
(e.g., measurement noise), as well as internal sources (e.g., 
unmodeled dynamics) [21]. This becomes particularly 
problematic in fields where data is inherently distorted. For 
instance, clinical data is often tainted by various factors, 
including measurement noises. To tackle this challenge, we 
are integrating VGI techniques into autoencoder learning, 
aiming to enhance the robustness of the identified models. 
This integration enables us to determine underlying model 
parameters, factoring in the uncertainties inherent in training 
data—referred to as aleatoric uncertainty [22]. Specifically, 
in this context, it relates to the uncertainties observed in fluid 
infusion doses and their corresponding hemodynamic 
responses. Such variability can arise from physiological 
factors, measurement inaccuracies, and other stochastic 
elements [9]. 

VGI enhances the performance of a standard autoencoder 
by introducing a probabilistic interpretation. Instead of 
encoding input data into a fixed latent space representation, 
the encoder maps the data onto a probability distribution over 
the latent space, typically assumed to be a multivariate 
Gaussian function. The decoder reconstructs the data by 
sampling from this latent distribution. This integrated system, 
often referred to as a variational autoencoder (VAE), 
leverages the benefits of a generative model. The enforced 
probability distribution in the VAE's latent space allows for 
efficient sampling and data point generation. Such a 
generative feature is especially valuable for dynamic state 
space modeling in time-series data. As the model produces 
results based on ever-changing inputs, this methodology 
becomes versatile for tasks demanding accurate 
reconstruction and generation within a dynamic data 
landscape. 

In the VAE, the focus is on approximating the true 
posterior distribution 𝑝𝑝𝜃𝜃(𝑥𝑥|𝑦𝑦), where 𝑥𝑥 denotes latent 
variables and 𝑦𝑦 is the observed data. Computing the true 
posterior 𝑝𝑝𝜃𝜃(𝑥𝑥|𝑦𝑦) is analytically intractable, prompting the 
introduction of a variational inference that approximates the 



  

posterior using a simpler variational distribution 𝑞𝑞𝜙𝜙(𝑥𝑥|𝑦𝑦), 
parameterized by 𝜙𝜙 = (𝜇𝜇,𝜎𝜎). Here, 𝜇𝜇 and 𝜎𝜎 denote the mean 
and standard deviation of the distribution, respectively. Their 
values are typically set to establish the prior distribution as a 
standard normal distribution, i.e., 𝜇𝜇 = 0 and 𝜎𝜎 = 1. The 
training goal for a VAE is to determine model parameters 
making the variational distribution 𝑞𝑞𝜙𝜙(𝑥𝑥|𝑦𝑦) closely match 
the true posterior distribution 𝑝𝑝𝜃𝜃(𝑥𝑥|𝑦𝑦). This is achieved by 
minimizing the Kullback-Leibler (KL) divergence between 
the two distributions, defined as [23]:  

𝐾𝐾𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑔𝑔𝑒𝑒𝑛𝑛𝐷𝐷𝑒𝑒 = 𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞𝜙𝜙(𝑥𝑥|𝑦𝑦)�𝑝𝑝𝜃𝜃(𝑥𝑥|𝑦𝑦)� = −1
2
Σ𝑁𝑁=1𝐷𝐷 (1 +

log𝜎𝜎2 − 𝜇𝜇2 − 𝜎𝜎2). (4) 

The model’s total loss function is derived as:  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙 = 𝐿𝐿1(𝑦𝑦�𝑘𝑘,𝑦𝑦𝑘𝑘) + 𝐿𝐿1(𝑦𝑦�𝑘𝑘+1,𝑦𝑦𝑘𝑘+1) +

𝐿𝐿1(𝑦𝑦�𝑘𝑘+1,𝑦𝑦𝑘𝑘+1) + 𝐿𝐿2(𝑥𝑥�𝑘𝑘+1, 𝑥𝑥𝑘𝑘+1), (5) 

with 𝐿𝐿2(𝑥𝑥, 𝑥𝑥�) = ||𝑥𝑥 − 𝑥𝑥�||2, and 𝐿𝐿1 defined as: 

𝐿𝐿1 = �|𝑥𝑥 − 𝑥𝑥�|�
2
− 1

2
Σ𝑁𝑁=1𝐷𝐷 (1 + log𝜎𝜎2 − 𝜇𝜇2 − 𝜎𝜎2). (6) 

Here, 𝐿𝐿1 comprises two parts: a reconstruction term and a 
KL divergence term. The former measures the quality of 
reconstructed data, while the latter ensures the learned latent 
space aligns with the assumed prior distribution.  

The resulting algorithm, integrating VGI and autoencoder 
learning for hemodynamics prediction, is named the 
RNSSM framework, as detailed in Fig. 1. 

III. RESULTS & DISCUSSION 

The proposed RNSSM approach leverages autoencoder 
learning and VGI within a unified framework to develop 
robust nonlinear state space models that are highly amenable 
to closed-loop control design. The dataset was sourced from 
an animal study conducted at the Resuscitation Research 
Laboratory, University of Texas Medical Branch [24], where 
different sheep underwent high and medium hemorrhage 
procedures accompanied by fluid infusion. The data 
collection process followed the study protocol approved by 
the Institutional Animal Care and Use Committee [24]. 

In the animal study, a hemorrhage rate of 25 ml/kg was 
administered to the subjects within the first 15 minutes, after 
which it was halted. At times t = 52 and t = 72 minutes, two 
smaller hemorrhage rates of 5 ml/kg were applied to each 
subject for a duration of 2 minutes. Fluid resuscitation using 
Lactated Ringer’s solution began 30 minutes after the start of 
study. MAP measurements were recorded every 5 minutes 
for a duration of 180 minutes. The input data for the model 
consisted of fluid infusion and hemorrhage rates, and the 
output data was the corresponding MAP values. 

The RNSSM training dataset consisted of N=1441 
samples. An early-stopping strategy was employed using 
10% of the training dataset to verify the stopping criterion. 
The dataset used for cross-validation comprised 131 samples. 
All three modules of the model (encoder, decoder, and 
bridge) were designed with two hidden layers, each 
consisting of 30 neurons. The ANNs consisted of 3651 
weights, evenly distributed among the modules. Simulations 
were conducted on data from six animal subjects.  

 
Figure 1.  Robust nonlinear state space modeling (RNSSM) framework 
integrating autoencoder learning and variational Gaussian inference for 
identification of hemodynamics from limited, noise-distorted clinical data. 
The framework leverages two distinct VAEs: The first VAE is focused on 
estimating 𝑦𝑦𝑘𝑘, and the second VAE is dedicated to approximating 𝑥𝑥𝑘𝑘+1 
through the state space transition function 𝑓𝑓. The estimation of 𝑓𝑓 is routed 
through the same decoder as the first VAE, ensuring that the inferred 𝑥𝑥𝑘𝑘+1 
results in reliable reconstructions. Furthermore, the reconstructed 𝑥𝑥�𝑘𝑘+1 is 
also processed through the same decoder to mitigate the error amplification 
when data navigate through the 𝑓𝑓 neural network. 

Fig. 2a displays the fluid and hemorrhage rates (inputs) 
during the animal study, while Fig. 2b illustrates the 
predicted MAP responses from the RNSSM model alongside 
the measured MAP for a sample subject. Fig. 2 demonstrates 
the model’s capability to track the real trend of time-series 
data and effectively capture MAP fluctuations caused by 
hemorrhage, highlighting the model’s robustness against 
external disturbances. 

Additionally, Table I presents the performance metrics, 
including root mean square error (RMSE), mean absolute 
error (MAE), and median absolute percentage error 
(MDAPE) for all subjects. These metrics provide quantitative 
insights into the model's accuracy. The outcomes highlight 
the model's capability to robustly and accurately capture 
MAP responses throughout the hemorrhage resuscitation, 
bolstering the case for continued exploration and 
enhancement of the RNSSM framework. The presented 
method addresses several key challenges in the field. It 
effectively tackles the issues caused by the noise and external 
disturbances, as well as the limited data availability. Also, the 
proposed method has border applicability in other fields such 
as robotics and manufacturing, where data availability is 
limited, and measurements are prone to noise.  

It's essential, moving forward, to present a comparison 
study against other resuscitation models. Additionally, a 
deeper probe into the robustness of the RNSSM model, 
especially in the face of uncertainties, is needed in the near 
future. The formulation of a closed-loop controller for fluid 
management, leveraging the RNSSM models, also presents 
an intriguing avenue for future research. 

TABLE I.  PERFORMANCE METRICS FOR ALL SUBJECTS 

 RMSE (%) MAE (%) MDAPE (%) 

MEAN 0.37 0.28 0.29 
STD 0.013 0.011 0.1 



  

 

 

Figure 2.  (a) Fluid infusion and hemorrhage rates during the animal study, 
and (b) measuered and predicted MAP responses from the RNSSM method. 

IV. CONCLUSION 

RNSSM, a novel modeling framework for predicting 
hemodynamic responses in hemorrhage resuscitation was 
presented. The approach combined autoencoder learning and 
VGI to overcome the challenges of identifying reliable 
models using limited and noisy critical care data. Simulation 
results were highly promising, encouraging further 
investigation of the RNSSM approach against state-of-the-art 
digital twin models in the near future. 
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