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Abstract— The unpredictability of seizures imposes a
significant burden on tens of millions of individuals with
epilepsy worldwide. The ability to continuously monitor and
forecast epileptic seizures would lead to a paradigm shift
in epilepsy management. In this paper, we propose a novel
progressive, personalized two-stage approach for seizure
forecasting using 10-minute wearable time series data from
wristbands worn by epilepsy patients. Our method effectively
tackles the challenges posed by class imbalance and the
complex nature of physiological signals. By measuring and
ranking the reconstruction error and energy the normal
samples present to a deep autoencoder and employing
scheduled sampling, we demonstrate superior performance
over existing deep learning models, anomaly detection methods,
and class balancing during training. The proposed approach
offers a promising solution for seizure forecasting and has
potential applications in other medical problems characterized
by imbalanced data and complex physiological signals.

Clinical relevance— The study demonstrates the potential
for seizure forecasting using wearable data and individualized
treatment planning. Its findings also highlight the value of
adaptive learning mechanisms in training deep learning models
for imbalanced healthcare data.

I. INTRODUCTION

Epilepsy, one of the most common brain disorders, impacts
over 70 million individuals globally and is characterized
by unpredictable seizures [1]. This unpredictability is a
major quality-of-life limiting factor for epilepsy patients
[2], making seizure forecasting a critical research area in
healthcare [3]. Approximately 80% of epilepsy sufferers live
in low- and middle-income regions [4], thus, developing
cost-effective seizure forecasting solutions can significantly
narrow the epilepsy treatment gap .

The advent of wrist-worn wearable devices has spurred
the development of algorithms to detect and forecast seizure
events in real-world settings [5]–[8]. Despite advances,
progress in improving detection accuracy and reducing false
alarm rates has been impeded by class imbalance inherent to
seizure datasets.

The emergence of deep learning methods has showcased
their superiority over traditional feature engineering, espe-
cially in seizure detection tasks [9]–[15]. However, deep
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learning models bring challenges, such as capturing the tem-
poral dependency in multi-sensor time series data, handling
sparse annotations in large datasets, and the severe imbalance
between positive and negative samples for tasks such as
seizure events.

Anomaly detection techniques address the imbalanced
label issue by identifying rare and unusual positive sam-
ples from normal samples [16]–[18]. For seizure detection,
they have been adapted to use the loss of reconstructing
encephalogram (EEG) signals to detect abnormal seizure
events, showing significant improvements over supervised
methods [19]–[22]. Yet, the application of anomaly detection
in seizure forecasting remains challenging due to the hetero-
geneity of data across patients and the focus of anomaly
detection on historical data.

Scheduled sampling for training, inspired by the concept
of curriculum learning, has been used to gradually increase
the complexity of the training data. This strategy of pro-
gressively introducing more complex tasks to the model is
analogous to human learning [23]. It has seen application in
the computer vision domain in tasks such as category discov-
ery [24]. Scheduled sampling methods have been proposed
for sequence-to-sequence predictions to improve Recurrent
Neural Network (RNN) model performance [25]. In seizure
detection and forecasting, the severe class imbalance makes it
difficult for traditional deep learning models to learn discrim-
inative features effectively. Employing scheduled sampling
aims to improve the deep model’s ability to provide more
accurate and robust seizure forecasting.

In this study, we present a two-stage learning method-
ology, with a pretraining phase employing a deep autoen-
coder to obtain the representations of the normal samples
and a fine-tuning stage employing scheduled sampling for
classification. Initially, difficulty scores in anomaly detection
are calculated as a combination of signal reconstruction loss
from an autoencoder structure and distribution energy from a
Gaussian mixture model (GMM)-based regularization mod-
ule. Intuitively, the model prioritizes mastering easier tasks,
such as identifying less ambiguous seizure patterns, before
progressing to more complex challenges, such as recognizing
subtle seizure indicators. This curriculum learning approach
enables our model to efficiently learn from a diverse range
of seizure patterns, ultimately reducing the false alarm rate
for seizure events. We evaluate our proposed framework
using two seizure datasets. Our experiments demonstrate the
proposed method achieved substantial improvement when
compared to supervised learning and anomaly detection
baselines.
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Fig. 1. The two-stage proposed method. Stage one focuses on representa-
tion learning, which reconstructs the normal samples from patient’s wearable
data, introducing a Gaussian Mixture Model (GMM) based regularization
term to enhance diversity in latent representations. The second stage imple-
ments scheduled sampling during training, which leverages difficulty scores
derived from the combination of reconstruction loss and the distribution
likelihood of GMM regularization.

II. METHOD

Figure 1 illustrates the two-stage framework of the pro-
posed method. Initially, we employ an autoencoder to pre-
train the network and impose a constraint on the latent space
representations to unify the distribution of normal samples. In
the supervised learning phase, we address the data imbalance
by under-sampling negative samples based on energy scores
obtained during the autoencoder phase. The seizure forecast
is generated by a classifier built upon the pre-trained encoder.

A. Signal reconstruction

We use a basic autoencoder structure for latent repre-
sentation extraction from wearable signals. The autoencoder
consists of an encoder E and a decoder D . The encoder
compresses the input signal x into a lower-dimensional latent
space representation z = E (x). The decoder reconstructs
the original signal x̂ = D(z). The goal is to minimize the
reconstruction error, measured as the mean squared error
between x and x̂.

B. GMM-based Energy Constraint Module

To ensure the latent space representation of normal sam-
ples follows a unified distribution, we implement a GMM
based energy constraint module, inspired by [17]. This mod-
ule employs an embedding layer and a coefficient estimation
network, designed to learn the mixture coefficients, means,
and covariances of the GMM. We minimize the sample
energy E(z) during autoencoder training, encouraging the
model to learn representations of normal samples under the
same Gaussian mixture distribution.

C. Encoder Fine-tuning with Scheduled Sampling during
Training

After training the Deep Autoencoding Gaussian Mixture
Model (DAGMM) on normal samples, we use these difficulty

scores to fine-tune the encoder in the second stage. We
implement scheduled sampling during training, defined by
Algorithm 1, and initialize the encoder with the pre-trained
encoder from the first stage. Our method pairs seizure-
positive samples with normal samples drawn from the ranked
pool of normal samples in sequential order. This strategy
enables the model to learn progressively from easier to more
challenging samples.

Algorithm 1 Two-Stage Scheduled Sampling for Seizure
Forecasting
Input: Data D = {(xi,yi)}N

i=1, where xi represents the mul-
tivariate time series and yi is the label (seizure or non-
seizure)

Output: Trained model M
1: Stage 1: Train a DAGMM on normal samples, define

the loss function as L1(x, x̂,z) = MSE(x, x̂)+GMM(z).
2: for each normal sample (xi,yi) ∈ D with yi = 0 do
3: Calculate reconstruction error εi, GMM energy Ei, and

difficulty score di = εi +Ei
4: end for
5: Stage 2: Fine-tune the encoder using scheduled sampling

during training, initialize the encoder E with the pre-
trained DAGMM encoder, and define the classification
loss function as L (y, ŷ) = CrossEntropy(y, ŷ).

6: for each iteration t do
7: Sample normal samples (xi,yi) based on difficulty

scores di and all seizure-positive samples (x j,y j) with
y j = 1.

8: Update the model M using the sampled data and the
loss function L (y, ŷ).

9: end for
10: return Trained model M

III. DATA & PREPROCESSING

A. My Seizure Gauge (MSG) Challenge dataset

This dataset, used in the My Seizure Gauge Project funded
by the Epilepsy Foundation of America [26], provides phys-
iological data recorded from epilepsy patients via Empatica
E4 wristbands. The dataset contains 129829 10-minute seg-
ments from 6 patients, of which 1089 segments are labeled
positive (pre-ictal). The device records 3D accelerometry
(ACC), blood volume pulse (BVP), electrodermal activity
(EDA), and temperature (TEMP) at various sampling rates,
which were subsequently resampled to 4Hz for the sole
purpose of reducing the computational complexity. The data
span a minimum of six months for each patient, with seizures
accurately logged via an implanted NeuroPace Responsive
Neurostimulation (RNS) device.

Each ten-minute data segment in the public dataset is
labeled 0 or 1, where a label of 1 denotes that more than
half of the segment data falls within 75-15 minutes before
a seizure onset, and a setback of 15 minutes is incorpo-
rated. Segments within four hours of a previous seizure are
unlabeled due to potential influences from the preceding



seizure. For preprocessing, we resampled the signals to 4Hz
and applied the Butterworth low-pass filter (cutoff frequency
64Hz) and min-max normalization.

B. Baylor College of Medicine (BCM) Epilepsy dataset

A clinical study was conducted to collect data using an
E4 sensor from 58 subjects diagnosed with epilepsy and
admitted to the long-term video-EEG monitoring unit (IRB
protocol #H-47804). The data include 24164 10-minute seg-
ments, of which 55 are labeled positive. The study accounted
for all seizure types identified by board-certified epilepsy
specialists. The labeling and preprocessing of the BCM data
align with that of the MSG dataset.

We split each dataset by allocating 80% for training and
20% for validation, ensuring a consistent ratio of normal to
seizure samples in both training and validation sets.

IV. EXPERIMENTS

This section offers both quantitative and qualitative evalua-
tions of our two-stage scheduled learning approach to seizure
forecasting from 10-minute wearable data segments. It was
tested against anomaly detection techniques (DAGMM),
end-to-end deep learning models (ResNet, LSTM) without
scheduled sampling, with random balanced sampling, and
with all patients data, and data balancing techniques (upsam-
pling/downsampling). Both patient-wise models and general
models were tested for the MSG dataset. However, for the
BCM dataset, only the general model was tested due to
limited seizure data. AUC-ROC, precision, recall, and F1
scores were used as performance measures.

A. Implementation Details

A modified ResNet18 architecture, adapted for time series
data, was used for the DAGMM encoder in the first stage
of our method, focusing on normal non-seizure samples.
The decoder was constructed with transposed convolution,
mirroring the encoder’s architecture. The mean square error
(MSE) loss function was utilized to assess the decoder’s
output against the input. For the GMM layer, we followed
[17], setting the number of GM components to 4.

In the second stage, we ranked normal samples based on
the sum of GMM energy and reconstruction score, indicating
their ”difficulty” levels. Then, we fine-tuned the pre-trained
encoder for supervised classification. We addressed the class
imbalance issue by upsampling seizure data samples during
each epoch of classification training.

Both stages were trained using the AdamW optimizer
[27] with a learning rate of 0.001 and a batch size of 64.
Early stopping was employed based on validation loss. We
used 50 epochs for autoencoder training and 30 epochs for
classifier training. To improve generalization, we applied
random jittering and scaling as data augmentation techniques
during training.

V. RESULTS & DISCUSSION

a) Impact of Scheduled Sampling during Training: In
our results shown in Tables I and II, the scheduled sampling

TABLE I
PERFORMANCE COMPARISON FOR MSG CHALLENGE DATASET.

RESNET-18* DENOTES RESNET-18 TRAINED WITH RANDOM BALANCED

SAMPLING (RBS), AS A COMPARISON TO SCHEDULED SAMPLING (SS).
ALL MODELS BUT RESNET-18 (ALL PATIENTS) ARE PERSONALIZED.
FOR ALL MODELS, AUC-ROC IS CALCULATED PATIENT-WISE AND

THEN AVERAGED.

Method AUC-ROC Precision Recall F1 Score
DAGMM 0.47 0.41 0.49 0.40
ResNet-18 (w/o SS) 0.56 0.50 0.51 0.34
ResNet-18
(w/o SS, all-patients) 0.55 0.50 0.55 0.26
ResNet-18∗ (with RBS) 0.59 0.51 0.54 0.30
Ours 0.64 0.51 0.66 0.48

TABLE II
PERFORMANCE COMPARISON FOR THE BCM DATASET

(GENERAL MODELS)

Method AUC-ROC Precision Recall F1 Score
DAGMM 0.52 0.49 0.51 0.32
ResNet-18 (w/o SS) 0.64 0.51 0.53 0.36
ResNet-18∗ (with RBS) 0.69 0.50 0.50 0.38
Ours 0.74 0.51 0.60 0.51

process consistently enhances model performance metrics,
confirming effective utilization of sample difficulties. This is
especially evident when comparing our proposed two stage
method (with scheduled sampling) with the model with ran-
dom balanced sampling but no designed schedule (ResNet-
18∗), which presents lower AUC and recall, validating the
benefits of our sampling strategy.

b) Patient-wise Training and Evaluation: We conduct
our experiments patient-wise for two reasons: clinical rele-
vancy and accuracy. Patient-wise modeling caters to individ-
ual differences in seizure patterns, physiological signals, and
treatment responsiveness [28], an essential perspective for
the highly heterogeneous nature of epilepsy [7], [29]. The
results in Table I reveal a significant decrease in accuracy
when a general model is trained on an all-patient basis. For
evaluation, the patient-averaged AUC is more suitable than
the overall AUC to reflect the true performance of the method
on individual patients, as the models are trained individually.

c) Two-stage Pipeline: Autoencoder-based anomaly
detection can reconstruct abnormal (seizure) samples with
high fidelity when even trained solely on normal samples,
limiting their ability to differentiate between seizure and
normal data. Table I and II show that the inferior per-
formance of DAGMM necessitates the use of a two-stage
mechanism, incorporating a fine-tuning stage for the encoder.
As illustrated in Figure 2, our scheduled sampling strategy
implemented in the fine-tuning stage not only improves the
validation AUC, but also facilitates faster convergence.

d) Limitations and Future Work: Our approach was
evaluated on a small dataset of six epilepsy patients, limiting
generalizability. Future research should aim to validate our
method on larger, more diverse datasets. Moreover, it would
be beneficial to investigate the potential of more advanced
deep learning architectures and the applicability of our
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Fig. 2. Validation AUC by iterations, with/without scheduled sampling
(SS).

method to other medical conditions characterized by highly
imbalanced data and complex physiological signals.

VI. CONCLUSIONS

Our two-stage scheduled learning approach provides a
promising solution to the problem of seizure forecasting
using wearable data segments. The method effectively ad-
dresses the issues of class imbalance and the complex nature
of epilepsy-related physiological signals. By employing a
scheduled sampling strategy inspired by the human learning
process, our approach successfully outperforms existing deep
learning models and anomaly detection methods, highlight-
ing the importance of incorporating adaptive learning mech-
anisms in the training of deep neural networks for seizure
forecasting.
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