
Radar-Based Human Skeleton Estimation with
CNN-LSTM Network Trained with Limited Data

M. Mahbubur Rahman
Dept. of Electrical & Computer Eng.

The University of Alabama
Tuscaloosa, USA

mrahman17@crimson.ua.edu

Dario Martelli
Dept. of Mechanical Eng.
The University of Alabama

Tuscaloosa, USA
dmartelli@ua.edu

Sevgi Z. Gurbuz
Dept. of Electrical & Computer Eng.

The University of Alabama
Tuscaloosa, USA
szgurbuz@ua.edu

Abstract—This paper presents a novel framework for human
pose estimation using millimeter-wave (mmWave) radar tech-
nology, focusing on personalized healthcare applications. The
proposed framework utilizes range-azimuth, range-elevation, and
range-Doppler maps as inputs to a convolutional neural network
(CNN) with a long short-term memory (LSTM) architecture to
capture temporal dependencies and achieve improved skeleton
estimation. Furthermore, this paper addresses the limitations
of current radar-based skeleton estimation techniques, such
as inconsistent kinematics and reliance on sparse radar point
clouds. Skeleton estimation accuracy attained using diversified
simulations is compared with that achieved real RF data, as
validated using gold standard Vicon motion capture (MoCap)
measurements as ground truth. The results highlight the po-
tential of mmWave radar-based human skeleton estimation for
advancing personalized healthcare and improving gait analysis
and fall risk assessment.

Index Terms—mmwave Radar, RF-Pose, skeleton estimation,
Vicon, health care

I. INTRODUCTION

Radar-based human activity recognition [1] has opened up
new opportunities in the design of cyber-physical systems
(CPS) for health and safety by providing an ambient, non-
contact, non-intrusive way to monitor human movement at
any time of the day (24/7). This is important because it can
enable the development of RF-based techniques for the early
diagnosis and post-treatment monitoring of ailments resulting
in symptoms impacting gait, as well as in improving ageing-
in-place and quality life by providing gait-based assessments
of fall risk - all in a home environment, where the person
monitored would be moving in a natural fashion while doing
daily activities. As such, it can provide a more realistic
assessment of human mobility and gait, as quantitative gait
analysis (QGA) methods are often unavailable and a person
often walks differently when cognizant of being observed.
Moreover, RF technologies have have the potential to improve
the accessibility of care while also reducing healthcare costs.

Most radar-based approaches to gait analysis rely on extrac-
tion of the micro-Doppler signature - essentially a 2D image
that represents the superposition of the time-varying velocity
profile of each point on the body. This representation provides
a limited characterization of human gait because it does not
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show the association of the measured velocities cannot with
the movement of specific points on the body, i.e. the skeletal
representation of the human body.

Radar-based human skeleton estimation was first considered
RF-Capture, proposed by Adib, et. al [2] in 2015. RF-Capture
outputs the positions of coarse human body parts using 5.4 to
7.2 GHz FMCW signals that transmit through an antenna array
and then stitches together the identified parts to reconstruct a
human figure. In 2018, Khatabi et.al., proposed RF-Pose3D
[3], which utilizes a 12 elements T shape antenna array to
transmit and receive FMCW signals at 6.3 GHz center fre-
quency and 1.8 GHz bandwidth. This method utilizes Range-
azimuth and Range-elevation heatmaps as inputs to a Resnet-
based encoder neural network. It uses 12 camera nodes to
record RGB-based video and obtain label key points from
OpenPose. This data is used to train a region proposal network
(RPN) that zooms in on the RF data of the individual person
and a CNN with ResNet architecture to extract the 3D skeleton
from the region of interest. For 14 key point localization,
average errors in the x,y, z axes were reported as 4.2, 4.0,
and 4.9cm, based on the key points estimated with OpenPose.
Although signficiant at the time for showing that RF skeleton
estimation was possible, this approach relied upon of over 17
million data samples acquired over 16 hours of recordings. Not
only was the method extremely data greedy, but it required an
extremely complex Deep Neural Network (DNN) with high
computation costs, hindering the practicality of the approach.

In 2020, Sengupta et. al proposed mmPose [4], which
predicts over 15 joints. To capture high-quality azimuth and
elevation information, they used two IWR1443 radars, where
one radar is flipped by 90 degrees with respect to the other
radar. The point clouds from both radars are fed into a
forked CNN, which is later combined to predict key points
with 3.2, 2.7, and 7.5 cm localization errors in x,y, z axes,
respectively, as compared with skeleton key points estimated
by a Kinect RGB-D camera, not a gold standard system.
Moreover, it should be noted that this approach did not exploit
the Doppler and reflected signal intensity information provided
by the radar system at all. This approach suffered from jitter
in the animations of the estimated skeletons. In 2022, the
authors proposed the use of additional filters [5] to mitigate
jitter and provide a more temporally stable skeleton. However,



Fig. 1. Proposed skeleton estimation framework.

this approach merely patches over the issues with the initial
skeleton estimates, and do not provide for fundamentally more
accurate skeleton estimation.

In 2021, Sizhe et. al proposed Mars [6], which utilizes
IWR1443 radar and off-the-shelf software provided point
cloud information (x,y,z coordinate) as well as Doppler and
intensity information for each point. The accuracy for 19-point
predictions in the x, y, and z, directions respectively were
reported as 6.99, 4.07, and 6.65 cm, respectively, again based
on comparisons with skeletons estimated by a Kinect camera.

Current works on RF skeleton estimation are thus limited
by several key issues. First, most current methods rely on
radar point clouds, provided by the software that comes with
commercially available RF sensing systems, as input to DNNs
to learn the skeletal key points. Thus, the Doppler measure-
ments of the radar and the temporal constraints incurred during
movement that are reflected in the micro-Doppler signature
are ignored. In contrast, physical temporal correlations are
essential aspects of human biomechanics, which also constrain
the temporal relationships between the skeletal key points.
Thus, considering temporal correlations is a critical aspect of
skeleton estimation that has been ignored in the estimation
process of currently proposed techniques.

Second, the use of Kinect as ground truth is inappropriate,
because Kinect has significant estimation error during skeleton
tracking. It has been shown in [7] the Kinect estimates a
simplistic form of the actual skeleton, and Kinect’s estimation
is erred compared to the marker-based skeleton estimation.

Third, current techniques rely on complex models that
require large amounts of data; thus, exploring lighter-weight
models that can give improved estimates is important for the
achievement of practical skeletal estimation, especially using
mobile computing platforms.

This work aims to address these challenges by proposing
a model trained with just 17 thousand samples that utilizes
not just a Convolutional Neural Network (CNN), but also an
Long Short-Term Memory (LSTM) recurrent neural network
to capture the temporal correlations that are critical to human
kinematics. Moreover, the proposed approach utilizes not just
spatial data from the radar, but the entire 4D radar ten-
sor, from which range-Azimuth, range-Elevation, and range-

Doppler maps can be extracted and provided as input to a
DNN model. The model predicts the x, y, and z coordinates
of different joints of the body part by considering Vicon
MoCap measurements as the ground truth. More details of the
proposed skeleton estimation technique are given in Section II,
while Section III presents results for the estimation accuracy
using synthetic data and with real data, computing estimation
error in comparison with that of simultaneously acquired
Vicon measurements. The paper concludes in Section IV.

II. PROPOSED APPROACH

To make the most of the information that the radar can
sense, an RF-based skeleton estimation framework is proposed
that utilizes all of the spatial and velocity measurements
provided by a radar, as illustrated in Figure 1. The proposed
framework uses range-azimuth, range-elevation, and range-
Doppler maps as inputs to the neural network. Through a
CNN-LSTM network, the temporal features from the time
dimension are extracted. The 4D inputs are fed into a CNN-
LSTM model, which consists of 4 convolutional layers and two
BiLSTM layers. The convolutional layers are associated with
the Time-Distributed wrapper, which allows the application of
a convolution to every temporal slice of the input. This helps
to extract the temporal features from the various 2D maps.
The time-distributed convolutional layers are followed by the
maxpooling layers to extract the spatio-temporal features cor-
responding the reflection from the human body. These spatio-
temporal features contain information regarding the range,
azimuth angle, elevation angle, Doppler, and the intensity of
the moving human targets in front of the radar. The BiLSTM
layers learn the dependencies of the extracted spatio-temporal
features between the consecutive time-frames. Finally, the key
points (x,y,z coordinates of the joints) are predicted through a
dense layer with linear activation.

The loss function of the model is computed as the mean
squared differences between the Vicon ground truth and the
output of the predicted dense layer. For prediction of K
keypoints, the loss function is given as follows:

Kpointsloss =

∑k
i=1(xi − x̂i)

2 + (yi − ŷi)
2 + (zi − ẑi)

2

3K
(1)



Fig. 2. Bio-markers were attached to the different body joints of the
participants during the experiment (left). The raw adc radar data has been
processed to generate 3 different feature heatmaps (right).

As the proposed framework utilizes the raw Range-Azimuth,
Range-Elevation and Range-Doppler maps as the 3 feature
inputs along with the time being the fourth dimension, the
learning model has access to all the acquired information
by the mmwave radar sensors. This includes the noise and
clutter of the surrounding environments as well. Therefore,
the feature extractor backbone network is robust to noise and
other environmental factors.

III. EXPERIMENTAL RESULTS

A. Data Acquisition and Pre-Processing

Both RF and MoCap data were collected simultaneously
for a free-moving human walking. The data were collected
in a laboratory setting, where a Vicon MoCap System with
8 cameras records the coordinates of bio-markers attached to
the joints of the body. The RF data were collected with TI
IWR2243 cascade radar operated on 77-81 GHz band with 12
Tx antenna and 16 Rx antenna, 1 meters above the ground.

Four healthy participants of different ages, heights, and
weights participated in an IRB-approved study in which each
participant walked back and forth in front of the radar for
10 minutes. A total of 40 minutes of RF data was acquired.
The radar data were collected at 10 frames per second (FPS),
whereas the Vicon captured the ground truth skeleton coordi-
nates at 100 FPS. Therefore, the Vicon data was down-sampled
to match the radar’s frame rate. The Vicon and radar frames
were synchronized using the frame where the participants
made the first turn. There were 20k synchronized frames.

The TI IWR2243 cascade radar was operated in TDM-
MIMO settings with 12 Tx and 16 RX, forming a total
of 192 virtual channels. Of these, 86 channels correspond
to the azimuth virtual antenna and only 4 channels with
an aperture size of 7 λ

2 correspond to the elevation virtual
antenna. Consequently, the radar’s azimuth resolution is sig-
nificantly greater than the elevation resolution. There are 256
ADC samples per chirp, and 128 chirp-loops per frame were
transmitted. Thus, the raw ADC data was decomposed into
range-azimuth (256x86), range-elevation(256x7), and range-
Doppler(256x128) maps. FFT-based match filtering is applied
in each plane’s direction to reveal target features. For example,
he range-azimuth heat map is found by computing an FFT

Fig. 3. Simulation of raw radar data utilizing the diversified motion capture
data.

along the range dimension, followed by an FFT (128 points)
across azimuth angle. As the target moved within a 0.2 to
6-meter range, the range dimension is lowered by truncating
the unused range bins. In this way, a 128x128 range-azimuth
map is generated. The same procedure is followed to generate
128x128 range-elevation and range-Doppler maps.

B. Simulation of Radar Data from Diversified MoCap

When training deep learning models, it is generally rec-
ommended to use a large amount of well-curated, diverse
and representative training dataset so that the model can
learn generalizable features. This is because deep learning
models, particularly neural networks, have many parameters
that need to be optimized, and a larger dataset provides more
information for the model to learn from and can lead to better
performance on unseen data. Training on a large dataset is not
an issue for computer vision tasks, but it is a big struggle to
accumulate a huge amount of radar data. Therefore, to initially
train the model, this work proposes to generate simulated radar
data from MoCap data. Diversification of human skeleton
motion capture (Mocap) data can be used to generate raw
radar data using multiple-input and multiple-output (MIMO)
radar simulation with 3 transmit (Tx) antennas (one of them
is elevation antenna) and 4 receive (Rx) antennas imitating
the antenna configuration of TI2243Boost radar. The Mocap
data can be used to create a virtual model of the human
body, and this model can be used to simulate how radar
signals would reflect off of the various parts of the body. The
simulation can be run for different scenarios, such as different
body types, sizes, and speeds of movement, and for different
positions and orientations of the body relative to the radar. This
will generate raw radar data that can be analyzed to extract
information about the body’s motion, such as walking speed,
arm and leg movement, and other details. In prior work [8],
diversification was shown to yield a synthetic micro-Doppler
signature database that was effective for model training.

In this work, from 20 Kinect MoCap samples of 10 sec long
each, 40k radar raw data frames have been synthesized. The
synthetic data frames are processed to generate range-azimuth,
range-elevation, and range-Doppler heatmaps. The Radar ADC
data simulation workflow has been shown in Figure 3.

C. Training and Evaluation

First, the proposed framework is trained on simulated radar
data, with Kinect V2 being used as ground truth. A total



Fig. 4. Human pose estimation for 21 key points prediction with Mocap
simulated Radar data in the training while using Kinect as the ground truth.
Training loss (left) and predicted pose (right) are also shown.

of 30k frames were utilized in training the framework, and
the remaining 10k frames were used in the inference stage.
The model was trained for 100 epochs for a 21 key points
prediction task. The mean absolute error in x, y, and z were
found to be 2.2cm, 2.3 cm, and 2.9 cm, respectively. Figure
5 shows the training and validation loss curve, as well as
the predicted skeleton, in comparison with the ground truth
skeleton. Note that this result surpasses the accuracy attained
by other techniques in the literature, which also compare on
Kinect data, but by using fewer training samples.

Fig. 5. Visual comparison of ground truth pose vs predicted pose. The
ellipsoidal model is applied to the predicted skeleton to make it visually
appealing.

Next, we evaluate skeleton estimation accuracy by applying
the proposed approach on real data, but with error now
computing using Vicon data as ground truth. The proposed
framework is trained with real data from 3 participants (17k
frames) for 100 epochs with 1e-4 learning rate, Adam opti-
mizer, and 512 GRU in BiLSTM layers with 0.5 dropouts. The
Vicon only provided the x,y, and z coordinates for 13 joints.
Therefore, in the initial attempts 39 (13x3) neurons were set in
the output layer. While tested on 4th subjects data, the mean
absolute error across the x, y, and z were 5 cm, 2cm, and 10
cm, respectively, achieved for prediction of 13 key points.

These results show the discrepancy between Kinect-based
error evaluation and Vicon-based error evaluation, as well as
the impact of the amount of data on the resulting accuracy.
Moreover, the results show the benefits of utilizing synthetic
data in training, resulting in a lighter weight neural network
achieving improved results.

Fig. 6. Human pose estimated while training on real radar data with Vicon
Mocap data as ground truth. The training loss and predicted pose are shown
side by side.

TABLE I
SKELETON ESTIMATION PERFORMANCE

Data
source

Key
points

Train/Test
Frames

Ground
Truth

MAE (cm)
x y z

Simulated
Radar Data 21 30k/10k Kinect 2.2 2.3 2.9

Real Radar Data 13 17k/3k Vicon 5.7 2.0 10.3

IV. CONCLUSION

This paper presents a novel framework for human pose
estimation using millimeter-wave (mmWave) technology, ad-
dressing the limitations of current RF-based pose estimation
techniques. The proposed framework utilizes raw mmWave
sensor data and a CNN-LSTM architecture to accurately esti-
mate the coordinates of body joints, showcasing its potential
for advancing personalized healthcare and improving gait
analysis and fall risk assessment. In future work, we plan to
expand the study to include more participants and quantify the
impact on radar transceiver architecture on accuracy.
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