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Abstract—Super-resolution is an important technique in var-
ious fields, particularly in medical imaging, where it plays a
crucial role in understanding and analysis of complex, qualitative,
and quantitative characteristics of tissues at high resolutions.
However, obtaining high-resolution images often faces practical
limitations pertaining to acquisition device limitations, patient
motion, or longer acquisition times. The remarkable success
of deep learning methods has recently opened doors to their
application in image super-resolution tasks as well. These deep
learning-based methods heavily rely on a substantial amount of
data, which is often unavailable, especially in the case of Mag-
netic Resonance Imaging (MRI) scans. Particularly in magnetic
Resonance super-resolution, it is often impossible to have low-
resolution and high-resolution training image pairs. To address
this, deep learning approaches simulate low-resolution images us-
ing many image degradation methods mimicking low-resolution
images to create training image pairs from the available few high-
resolution images. However, models trained on specific degra-
dation simulations exhibit bias, leading to poor performance in
real-world scenarios. In this paper, we hypothesize that such deep
learning models trained on specific training image pairs with a
specific degradation model are biased, we systematically study
such biases with different types of degradation, different deep
learning frameworks, and training losses. Finally, we advocate
ensuring the diversity of degradation models to generate training
image pairs controls such biases resulting in a more robust
learning framework for MR image super-resolution.

Index Terms—MRI, Super-resolution, Model Bias, Diverse
Degradation model

I. INTRODUCTION

Super-Resolution (SR) is the process of reconstructing a
High-resolution (HR) image from a Low-resolution (LR) input
as shown in Figure 1. In MRI applications, high-resolution
images are desirable for accurate diagnosis. However, the
acquisition of high-resolution images requires sophisticated
devices or a longer acquisition time. The resulting images may

be sensitive to the patient’s motion leading to a low-quality
image. Super-resolution plays an important role in MRI [5]
[6] [13] by enabling the recovery of high-resolution images
without incurring an additional cost in terms of time and
facilitating the patient’s comfort.
The super-resolution problem can be formulated as:

y = ϕ(x; θd), (1)

where ϕ is the degradation model with parameter θd that
a desired high-resolution image x undergoes and y is the
low-resolution image in Fig. 1. The objective of the super-
resolution technique is to find an estimate x̂ of the high-
resolution image x such that:

x̂ = ϕ−1(y; θr) (2)

where ϕ−1(·) is the inverse mapping function that maps
low-resolution images to high-resolution images.

Fig. 1: Single image super-resolution



Recent advancements in Deep Learning (DL) methods
have showcased their potential for super-resolution techniques.
However, these methods require a large amount of data
for effective training and learning purposes. In MRI super-
resolution, often, the low-resolution and high-resolution image
pair (yi, xi) do not exist because i) it is not possible to acquire
exact low-resolution and high-resolution image training pairs
because of inherent challenges such as the motion of subject
between two acquisitions and prohibitively long acquisition
times and ii) the degradation model ϕ(·) in MRI is non-
deterministic. In most state-of-the-art DL frameworks for im-
age super-resolution [10] [12], training examples are generated
by simulating a specific degradation method such as Bicubic
Downsample, Gaussian Blurring, or Median Filtering. Testing
the model on LR images that are mimicked using the same
degradation model as in the training set can lead to optimal
results. In real-world examples, low-resolution images may
have been acquired through a more sophisticated process such
as sub-sampling, band-limiting, or accelerated acquisition [1],
which are not necessarily accurately represented by one of
the downsampling or filtering techniques used for generating
training LR image from HR images.

In this work, we argue that it is crucial to have a better
representation of various types of degradation in the data to
build robust deep learning-based super-resolution frameworks
and avoid misleading performance and efficiency metrics.
We hypothesize that:

1) DL-based super-resolution frameworks are biased to-
ward degradation model ϕ(·) used to simulate low-
resolution images for training DL framework. In other
words, ˆϕ−1 learned by a DL framework is biased
towards ϕ(·) used to create training image pairs.

2) Enforcing the diversity of the degradation models in the
training data set improves generalization and reduces the
bias of the DL super-resolution framework.

To examine our first hypothesis, in our first set of ex-
periments, we trained an SRDenseNet architecture using six
separate training data sets representing a different type of
degradation. Our results demonstrate that the model is only
able to produce HR images with improved resolution when
the test set images have the same type of degradation as the
training set. To the best of our knowledge, this study is the
first to investigate model bias in the field of deep learning-
based super-resolution approaches.
We also conducted additional experiments with different DL
architectures and objective functions to investigate how this
bias is affected. To support our second hypothesis, we trained
a DL architecture using a combined data set consisting of
equal numbers of samples from multiple degradations while
maintaining the same numbers of training image pairs (training
data size) same as in the first set of experiments.

II. RELATED WORK
A. Convolutional Neural Network (CNN) based methods

Deep learning-based CNN architecture was first introduced
in [3] for super-resolution tasks, named SRCNN. Since then,

various work has tried to improve the result by exploring
the network architecture design and learning method [7][2]
[9][8]. For instance, VDSR [7] used higher learning rates
to learn only the residual between low-resolution and high-
resolution images and employed adjustable gradient clipping
to mitigate the gradient explosion problem. FSRCNN [2]
proposed a compact hourglass-shaped CNN structure to reduce
model complexity and improve efficiency for super-resolution.
LapSRN [9] utilized a deep Laplacian pyramid structure
to progressively reconstruct the sub-band residuals of high-
resolution images at multiple pyramid levels to reduce com-
putational cost. DRCN [8] introduced recursive networks with
skip connections to mitigate the vanishing gradient problem. In
DRCN, the output from each internal layer is skip-connected
to the final convolutional layer, and the final high-resolution
output is obtained by averaging all outputs from internal
layers. Subsequent improvements over DCNN optimize the
network by removing unnecessary modules in conventional
residual networks such as the Batch Normalization (BN) layer
to reduce computation and memory usage while exploiting the
inter-relation of learned features for each scale using a new
multi-scale model that efficiently reconstructs high-resolution
images for various scales [11].
The choice of the objective function in deep learning training
significantly affects performance. In super-resolution research,
different loss functions have been explored to enhance image
quality [10] [17]. The author investigates different loss func-
tions (L1 loss, MSE loss, SSIM, and Multi-scale Structural
Similarity Index Measure (MS-SSIM)) for image restoration
tasks in [17]. Super-resolution Generative Adversarial Netwotk
(SRGAN) [10] introduced an adversarial loss to move the
output image toward the natural image manifold. Subsequent
work based on GAN [15] made several improvements over SR-
GAN to achieve perceptually convincing results. They intro-
duced a new architecture, Residual-in-Residual Dense Block
Network (RRDBNet) with residual scaling and excluding BN
layers.

B. Transformer based methods

Transformer has achieved state-of-art results in Natural
Language Processing. Due to its advantage of global attention
and long range dependency inclusion, several works have fo-
cused on incorporating transformer architecture for computer
vision problems. Transformer was first adopted for the image
classification task in [4]. In the work [12], the author proposed
a novel network that combines CNN with a transformer
layer, achieving a significant result in super-resolution tasks.
This model utilizes CNN to extract valuable features and the
Transformer layer to capture long-range dependencies.

Prior approaches have investigated network architecture
and learning techniques for accomplishing super-resolution
tasks. However, the influence of the data set quality on the
model’s performance has been overlooked in these studies. In
this work, we study the influence of quality of data on the
performance of deep learning models and propose a method
to improve it to generate a robust model.



III. METHODS

A. Network Architecture

In our experiment, we trained three distinct deep-learning
architectures with varying complexity. The first architecture,
SRCNN, was introduced in [3], marking the initial application
of deep learning architecture in super-resolution tasks. SRCNN
comprises three convolution layers with ReLU activation and
kernel sizes of 9, 5, and 5, respectively.
The second architecture, SRDenseNet [14], utilizes dense
connections, where the feature maps from each layer are skip-
connected to every subsequent layer. This promotes better
information flow and mitigates the vanishing gradient problem
in deeper architectures. SRDenseNet consists of four types of
blocks, consisting of initial convolution blocks, dense blocks, a
bottleneck layer, and a reconstruction layer. Each of these com-
ponents involves a single convolution layer except the dense
block. The bottleneck layer aggregates the information along
the channel dimension before passing it to the reconstruction
layer. In our study, the network utilizes five dense blocks, each
containing five convolution layers with a growth rate of 5. The
activation function for all layers, except the last one, is Leaky
ReLU with a negative slope of 0.2. The last layer employs the
Tanh activation function.
Finally, we trained RRDBNet, which shares the same archi-
tecture as [15], with the exception that we employ only three
residual blocks to reduce the model complexity.

Fig. 2: Training and data preparation pipeline

B. Loss Function

To further ascertain the biases in DL-based Super-resolution
frameworks are from the degradation model not from the
network architectures or loss functions, we trained all three
deep learning architectures using three different loss functions:
Mean Squared Error (MSE) loss, Structural Similarity Index
Measure (SSIM) loss, L1 loss. MSE loss is defined as:

LMSE = Σn
i=1(xi − x̂i)

2 (3)

where xi is the label image, x̂i is the output image and n is
the number of training examples.
L1 loss is an alternative to MSE loss which measures the sum
of absolute differences between pixels in the output and label
images. L1 loss is defined as:

Ll1 = Σn
i=1|xi − x̂i| (4)

SSIM [16] is used as a metric to evaluate image quality

based on structural information and has been used as a loss
function for super-resolution tasks [17]. The SSIM measures
the difference between two images in terms of structure,
luminance, and contrast. The SSIM metric is calculated as
:

SSIM(x, x̂) =
2µxµx̂ + C1

µ2
x + µ2

x̂ + C1
.

2σxx̂ + C2

σ2
x + σ2

x̂ + C2
(5)

where µx and µx̂ are pixel sample mean of image x and
x̂ respectively. σx, σx̂ and σxx̂ are the variance of x, x̂ and
covariance of x and x̂ respectively. Also, C1 and C2 denote
the brightness of two images.

In case of SSIM loss, we want to increase SSIM value,
therefore, SSIM loss is defined as:

LSSIM = Σn
i=1(1− SSIM(xi, x̂i)) (6)

IV. EXPERIMENTS

A. Dataset

All experiments were carried out in compliance with the
local Institutional Animal Care and Use Committee. Five
Alzheimer’s disease (AD) with 5xFAD background mice
brains were acquired on a 30-cm bore 9.4 T magnet (Bruker-
BioSpec 94/30, Billerica, MA). A 3D gradient echo (GRE)
pulse sequence was performed at the spatial resolution of 25×
25 × 25 mm3, FOV = 18.0 mm × 12.8 mm × 7.6 mm, flip
angle = 45°, bandwidth (BW) = 125 kHz, and TR = 100ms.
We used these acquired volumes of dimension 720*512*360
from 4 different subjects with an isotropic resolution of 25-
micron as high-resolution samples. We took the image slices
along the last dimension to obtain high-resolution images of
dimension 720*512.
We simulate low-resolution degradation using six different
degradation methods: Bicubic Downsample, Gaussian Blur-
ring, Mean, Median, Hanning, and Hamming Filtering to
obtain the corresponding low-resolution image from its high-
resolution counterparts. Each of these data sets contains 720
training, 167 validation, and 73 test examples. Furthermore, we
create a combined data set of size 720 consisting of an equal
number of random images from each of those six data sets to
create a training data set with diverse degradation. To ensure
fairness in our experiments and comparisons, we maintained
an equal number of train, test, and validation samples in
all degradation data sets. The complete data preparation and
training pipeline is shown in Figure 2.
We evaluate the performance of the model using Peak Sig-
nal To Noise Ratio (PSNR), SSIM, Normalized Root Mean
Squared Error (NRMSE), and High-Frequency Error Norm
(HFEN) values. A Higher value for PSNR and SSIM, and
a lower value for NRMSE and HFEN indicate a better result.
PSNR is widely used metric to determine the quality of image.
PSNR is calculated as:

PSNR = 10 log10

(
L

1
MΣM

i=1(xi − x̂i)2

)
,

(7)



where L is maximum pixel value and M is the number of
pixel.

B. Training Details

We trained the SRDenseNet model for 500 epochs, employ-
ing MSE loss as the objective function. The learning rate is
initially set to 0.0001 and reduced by a factor of 0.05 at every
30 and 50 epochs. The input low-resolution images and label
high-resolution images were normalized to the range of [0, 1].
The training is performed with a batch size of 4, utilizing the
Adam optimizer. We repeat the experiment for each of the six
data sets and a combined data set as outlined in the dataset
section.
In subsequent experiments, we maintain the same configu-
ration regarding to settings such as learning rate, number
of epochs, and batch size. However, we use different loss
functions. Specifically, we used L1 loss and SSIM loss.
Furthermore, we separately train the SRCNN and RRDBNet
models on the six data sets and the combined data set, using
MSE loss as the objective function.

C. Results

Table I lists the results of SRDenseNet trained on six data
sets and the Combine data set as described in the data set
section. In all these experiments, all other training settings
remained the same, except the degradation model. When the
test set images have the same degradation model, SRDenseNet
trained on a single degradation achieves the best results.
However, for all other test sets with a different degradation
model than that of the training, the results were substantially
poor. For instance, a Bicubic model trained on a Bicubic
Downsampled training set achieves an average PSNR of 33.82
dB for test images that had undergone Bicubic degradation
but its performance drops to 28.53dB on the same test set
images but had gone through a Gaussian blur degradation to
mimic LR images as depicted in the fourth row of the table
I. Similar observations could be made for all other rows as
well. This support our first hypothesis that the model is biased
on the training data set degradation method. In contrast, the
combined model trained on the Combine data set achieves
comparable PSNR between 30.82 dB to 34.46 dB for all
six types of degradation test sets. This supports our second
hypothesis and ascertains that incorporating diversity into the
training data set helps in reducing model bias and enhancing
generalization capability. The representative visual example to
depict the model bias on training model degradation is shown
in Figure 4. We can see that only the Bicubic model and the
combined model have better PSNR and SSIM compared to
other models because, for the Bicubic model, the training and
test degradation model is the same, suggesting that DL SR
framework are biased on the degradation model and hence
supporting our first hypothesis. The robust performance of the
combined model supports our second hypothesis.

Table II summarizes the results of SRDenseNet trained
using L1 and SSIM loss. We can observe similar biases in the
case of both losses. This demonstrates that model bias exists
regardless of the loss function used for training. Moreover, the
combined model consistently performs well across all test sets
in both cases, highlighting the effectiveness of the diverse data
set which again supports our second hypothesis.

Table III displays the results of the bias experiment with
different architectures. The RRDBNet and SRCNN models
trained on a combined data set achieve robust performance
across all test sets. Conversely, models trained on a single
degradation show a larger variance in PSNR values when
tested across multiple types of degradation test sets. For
instance, RRDBNet trained on the Gaussian Blur dataset
achieves an average PSNR of 33.65dB on the Gaussian test
set, but its performance drops to 30.09 dB, 30.78dB, 27.07 dB,
23.96 dB, and 20.31 dB when tested on the Hanning, Ham-
ming, Bicubic, Mean, and Median datasets, respectively. All
of the above experiments, tables, and results we also computed
for all three model architectures and all three losses described
in the Methods section. Only a few results are presented here
because of the space limit. However, our observations on all
experiments consistently support both hypotheses.

TABLE I: Average PSNR Value For SRDenseNet Architecture

Test Set
Training Set Gaussian Hanning Hamming Bicubic Mean Median
Gaussian 34.33 31.07 31.56 26.68 25.81 23.17
Hanning 27.34 31.92 30.08 25.53 27.03 23.86
Hamming 32.29 31.39 32.23 28.33 32.15 28.16
Bicubic 28.53 27.71 28.23 33.82 29.43 28.68
Mean 30.61 29.16 29.06 28.99 36.44 23.47
Median 30.22 28.18 29.13 31.48 32.69 33.54
Combine 32.47 30.82 31.42 32.82 34.46 32.88

TABLE II: Average PSNR Value For SRDenseNet trained
using different loss function

Loss Training Set
Test Set

Gaussian Hanning Hamming Bicubic Mean Median

SSIM loss

Gaussian 34.52 31.11 31.59 25.76 22.22 19.88
Hanning 25.88 31.48 28.69 24.57 25.42 22.63
Hamming 31.72 31.42 31.92 28.3 31.49 28.04
Bicubic 28.42 27.66 28.15 33.41 29.23 29.39
Mean 30.74 30.77 31.42 28.05 36.51 24.33
Median 31.32 30.27 30.82 30.42 32.96 33.41
Combine 31.79 30.64 31.25 31.38 33.68 32.24

L1 loss

Gaussian 34.3 30.98 31.55 26.3 24.12 20.55
Hanning 28.17 31.83 30.86 26.26 28.16 24.45
Hamming 29.17 31.79 30.99 26.77 28.75 25.60
Bicubic 28.65 27.76 28.29 33.73 29.5 18.75
Mean 31.01 30.62 31.26 28.69 36.03 26.04
Median 31.18 30.14 30.69 30.53 32.71 33.21
Combine 31.52 30.14 30.73 32.72 34.17 32.58

V. CONCLUSIONS

In this paper, we examine the model bias on training data
and propose a method to overcome it. Our results on the
experiment with multiple types of degradation demonstrate
that the model performance is optimistic while tested on the
same degradation as the training set. On the other hand, the
model trained on data set with diverse samples demonstrates
enhanced robustness and achieves comparable performance
across various types of degradation. In conclusion, our study
highlights the significance of training data quality and suggests
that it can be improved by incorporating diverse samples.



TABLE III: Average PSNR Value For different Model Archi-
tecture trained using MSE loss

Model Training Set Test Set
Gauss Hann Hamm Bicubic Mean Median

SRCNN

Gaussian 34.3 31.08 31.6 27.31 27.86 25.14
Hanning 31.57 31.64 31.82 27.96 31.47 28.59
Hamming 31.55 31.63 31.84 27.89 31.46 28.37
Bicubic 28.711 27.86 28.37 33.64 29.54 28.73
Mean 31.74 30.82 31.49 29.36 35.48 28.65
Median 31.64 30.55 31.12 29.88 32.26 32.92
Combine 32.18 31.06 31.61 29.59 33.44 32.27

RRDBNet

Gaussian 33.65 30.09 30.78 27.07 23.96 20.31
Hanning 25.11 31.58 28.93 24.77 24.76 20.99
Hamming 31.72 31.1 31.84 30.19 31.92 28.26
Bicubic 28.58 27.76 28.28 33.8 29.44 28.83
Mean 30.23 29.98 30.62 29.21 35.84 23.73
Median 30.6 29.79 30.31 31.09 32.47 33.54
Combine 32.55 30.26 31.12 33 34.92 33.09

Fig. 3: Box plot for Average HFEN value for scale factor 2
trained on a) Gaussian, b) Hanning, c) Hamming, d) Bicubic,
e) Mean, f) Median, and g) Combined datasets. Input label
represents the plot for input and label images. Blue box plot
lower than red represent better results. From the figure, we
can see that model trained on the (g) Combined dataset has
robust performance across all six test sets (Gaussian, Hanning,
Hamming, Bicubic, Mean, Median and Combine Set) whereas
other models performance fluctuates depending on the nature
of testing set.
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