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Abstract—We investigate AR-based tracking and registration
of the liver surface for potential surgical applications. Our
approach consists of streaming RGBD data from a Hololens2
device, RGBD segmentation using a deep learning model and
registering the acquired partial liver surface point cloud with
the corresponding virtual liver model. We aim to derive basic
requirements for AR-guided liver surgery, thus consider several
test cases of partially occluded liver as it would appear in
surgical scenarios. To evaluate our approach, we use a 3D-printed
phantom with basic texture and rigid structure. Our results show
that the visible liver section has a substantial impact of feature
extraction and matching, thus the registration process. Test cases,
where specific anatomical features are visible, e.g. the right liver
lobe, yielded superior outcomes compared to other cases, e.g. only
the left liver lobe visible. Moreover, our results showed that large
scale Hololens movements during the tracking process affected
the registration performance. Our implementation achieved 2-
3 frames per second for tracking and registration. We discuss
the potential and limitations of utilizing Hololens2 for real-time
tracking and registration of the liver surface. To our knowledge
this is the first experimental approach for real-time markerless
tracking and registration for AR-guided surgery guidance using
the Hololens2 sensors only.

Index Terms—Augmented Reality, Tracking, liver surgery,
Registration

I. INTRODUCTION

Numerous studies have investigated how Augmented Re-
ality (AR) could be implemented into surgical procedures,
e.g. see [1], [2]. Applications in orthopedic surgeries, in
particular, have demonstrated the benefits of AR, as it provides
additional visualization capabilities that enhance procedural
efficiency and reduce complications and surgery time [3],
[4]. However, AR guided navigation in open surgeries, e.g.,
abdominal surgeries is limited, compared to other surgical
applications. A particular challenge for open surgery AR are
non-rigid structures and limited visibility of organs during
the surgery [1], [5].In liver resection surgery, for instance,
the successful implementation of an AR-guided system ne-
cessitates continuous tracking of the visible liver surface and
the registration of the patient’s virtual liver model on the
detected surface. The variability of the detected surface poses
a challenge in accurate registration of the virtual liver-model

onto its real counterpart, as it limits the use of optical or
electromagnetic markers, which are usually used for marker-
based tracking and registration methods [5]. In contrast, optical
depth sensors (e.g. RGBD-cameras) as used in AR-devices
like tablets, smartphones and Head-Mounted-Devices (HMD)
combined with advanced algorithms for RGBD-tracking and
segmentation have shown promise in markerless tracking of
moving objects, particularly in the domains of autonomous
driving and AR-supported surgeries [6], [7]. HMDs, in par-
ticular, offer intriguing possibilities for AR-guided surgery by
enabling in-situ visualization, where relevant information is
superimposed directly onto the surgical scene, facilitating an
uninterrupted line of sight between the surgeon and the target
organ [2], [8]. Nevertheless, the potential of HMDs for live,
fully automatic tracking and registration of partially visible
target organs without additional tracking sensors has not been
thoroughly studied.

In this paper, we asses the feasibility of using an RGBD-
tracking algorithm coupled with rigid registration using the
integrated sensors of the Hololens2 for tracking the surface
of a 3D-printed liver phantom in different environments. We
consider the most simple case with easily traceable textures
and a rigid organ to explore minimum requirements for the
visible part of the liver based solely on sensor quality and liver
anatomy. Across the test cases considered, the liver structure
was only partially visible, to simulate a realistic surgery
situation. Additionally, we determine the computational time
requirements for further corrections, such as non-rigid reg-
istration and post-processing tracking predictions, which are
influenced by the temporal resolution of the AR sensors.

II. MATERIALS AND METHODS

Our approach to AR-guided liver tracking and registration
consists of three steps. (A) - Data streaming: Continuous
data streaming from the Holelens sensors to a main computer
for data processing. (B) - RGBD-segmentation: Frame-per-
frame segmentation of the visible liver surface using a deep
learning model for RGBD-segmentation (C) - Registration:
Automatic registration of the virtual liver model (created from



prior CT-scan) to the segmented partial liver surface, using a
rigid registration algorithm based on feature matching. Our
approach is depicted in Fig. 1.

Fig. 1. Overview of our approach to AR-guided liver tracking and registration:
(A) Data streaming from the Hololens2 to a main computer. (B) RGBD-
segmentation using a deep learning network and generation of the liver
surface point cloud (sensor point cloud). (C) Automatic feature matching and
registration of the sensor point cloud with the point cloud of the liver mesh
(source point cloud).

A. Data streaming

To facilitate the continuous streaming of data from the
HMD’s RGB camera and time-of-flight based depth sensor
to a computer, we employ the Hololens2 sensor streaming
application (hl2ss). The application implements a live data
transfer via a WLAN connection [9]. The RGB camera cap-
tures high-resolution images at 1920x1080 pixels at 30 frames
per second (FPS). In contrast, the depth sensor operates at a
lower resolution of 320x288 at 1 to 5 FPS. Using extrinsic
and intrinsic parameters of both sensors (e.g. sensor position
and field of view), we mapped RGB images to corresponding
depth images.

B. RGBD segmentation

We utilize a SegNet architecture [10] for tracking the visible
part of a red 3D-printed rigid liver phantom surface. The model
was trained with previously collected data using the same
hardware and phantom. The acquired and adapted RGBD-pair
at each frame, serves as the input for the RGBD segmen-
tation network. Upon generating a segmentation prediction,
we generated a point cloud representation of the partial liver
surface (sensor point cloud).

C. Registration of liver point cloud and model

The partial liver point cloud (sensor point cloud) and its
corresponding virtual model were registered to represent the
complete liver. we initially create a point cloud comprising
1500 points sampled from the liver model using the Poisson
Disk Sampling algorithm (model point cloud). The density
of the point cloud was adjusted to resemble that of a fully

detected liver surface acquired using the Hololens sensors,
with a voxel size of 5 mm. Subsequently, Fast Point Feature
Histogram (FPFH) features [11] are computed for both the
sensor and the source point cloud. A global RANSAC (Ran-
dom Sample Consensus) registration [12] is then performed by
feature matching between the two point clouds. Following the
global registration, a refinement process is conducted using
the Iterative Closest Point (ICP) algorithm [13]. Given the
dynamic nature of the generated liver surface point cloud,
FPFH features are recomputed after each frame capture. The
newly calculated global registration transformation is only
applied if the Root Mean Square Error (RMSE) value of
correspondences from both point clouds is reduced following
the feature computation. In cases where the RMSE value does
not decrease, only the registration transformation from the
ICP algorithm is employed. All algorithms for the processing
and registration of point clouds were implemented using the
Open3D Python library [14].

D. Evaluation methods

In order to investigate the minimal visibility requirements
for the liver based on the sensor capabilities of the Hololens2
device and the anatomical characteristics of the liver, a series
of test cases were created. The test cases involve placing a liver
phantom on a table, partially covered by a white cloth, fol-
lowing the scenarios of commonly performed hepatic resection
surgeries as outlined in [15]. For the test cases, the liver was
only partially visible, to simulate a realistic surgery situation.
Additionally, as a reference and benchmark, we performed a
full liver surface registration, without occlusions. Furthermore,
to simulate a realistic surgical environment, the liver phantom
was embedded within a torso phantom featuring a longitudinal
incision across the abdomen, allowing for the opening of
the abdominal cavity. For our experimental purposes, a red
3D-printed rigid liver phantom is employed. The phantom is
based on a segmented CT-scan obtained from the 3Dircad
dataset [16]. The color of the phantom was specifically chosen
to optimize the tracking performance. A visual depiction of the
test cases can be found in Table I.

For each of the created test cases, a 2-minute recording
session was conducted, repeated over 5 iterations. Each record-
ing session commenced with the liver being viewed from the
visible side (e.g., right side for the test case right hepatectomy),
with a rotation of 90◦ around the table after 35 s to capture a
frontal view of the liver. In the final 35 s of the recording, the
liver was viewed from the covered side of the respective test
case, following another 90◦ rotation around the table.

To determine the registration performance, we manually
annotated all frames with feature matching failures NFail. We
subsequently derived a success rate by (N–NFail)/N with N
being the total number of recorded frames. Furthermore we
categorised the calculated success rates according to the four
stages of the recordings, consisting of three static viewing
points (left view, front view, and right view) and two rotation
phases (moving camera). For further analysis, we select the
test cases with the best success rates and calculate the minimal



distances between the sensor point cloud and the registered
liver meshes. We analyse the median of the calculated dis-
tances across the recorded frames and annotate the start and
end of both rotation phases in each recording. Additionally, we
calculated distances of manually selected correspondent points
on randomly selected frame from the reference recordings for
a more quantitative representation of the registration accuracy.

III. RESULTS

Table I presents an overview of the success rates, ex-
pressed as percentages, for feature matching in the various
test cases alongside the average number of acquired frames
per recording. The number of frames recorded in a span
of 2 minutes per test-case ranged between 250 and 326,
indicating that the required computation was achieved at 2-
3 frames per second. Notably, test cases with a smaller visible
portion of the liver exhibited an approximately 30% higher
average number of acquired frames. The highest success rates
in feature matching were observed in the test cases extended
right hepatectomy and the reference case, in which the liver
was fully visible, followed by the test-case right hepatectomy.
However, in the left hepatectomy and left lobectomy test cases,
the visible portion of the liver was insufficient to achieve
feature matching using FPFH-features of the generated point
clouds. For the torso-phantom test case, we achieved a success
rate of 91% across all recorded frames. Fig. 3 shows examples
of successful and failed feature matching.

Fig. 2 depicts median and interquartile range of distances
between the generated point clouds (sensor point cloud) and
the registered liver meshes in four test cases with the high-
est feature matching success rates. Median distances ranged
between 0.3 mm and 6.5 mm for all the analysed test-cases.
Sudden increases in the calculated distances were primarily
observed during the head rotation phases of the recordings.
The average RMSE value calculated with manually selected
corresponding points (3 per frame) from 25 randomly picked
frames from the reference recordings was 13± 4.8 mm.

IV. DISCUSSION

Our results demonstrate the feasibility of employing the
Hololens2 for liver surface tracking and feature matching-
based rigid registration during open liver surgery, achieving
a frame rate of 2-3 FPS. The frame rate variability was
influenced by the number of points of the generated point
cloud (sensor point cloud) and the corresponding computa-
tional complexity, as shown in Tab. I. Reducing the point
density of the sensor and source point clouds resulted in
a decrease of feature matching success rate. The achieved
frame rate shows the potential for further developments, in-
cluding post-processing segmentation results or incorporating
non-rigid registration techniques similar to [7] to achieve
live (< 1s) tracking and registration.

The success rates of the feature matching algorithm show
a correlation with occlusion level and visible liver anatomy.
Specifically, test cases where the larger right lobe of the liver
was fully visible exhibited success rates above 95%, while

Fig. 2. Distances between sensor point cloud and liver mesh across all test
cases: reference, right hepatectomy, extended right hepatectomy, and torso
phantom. Solid line: median. Shaded ranges: interquartile range. Letters {R, L,
F} identify static phases right view, left view, and front view in the recordings,
respectively.

Fig. 3. Example of the outcomes of a successful and failed registration based
on matching computed Fast Point Feature Histogram (FPFH) features.

cases with only the left lobe visible resulted in failures. A
comparative analysis of the test case extended left hepatectomy
and left hepatectomy highlights an increase in the calcu-
lated success rate, which can be attributed to the expanded
visible surface area of the liver. Conversely, comparing the
test case extended left hepatectomy with the test case right
hepatectomy demonstrates that the enhanced visibility of the
right lobe substantially contributes to the improved success
rate of feature matching despite the relatively smaller visible
surface area (compare Tab. I). The test case involving the torso
phantom presents a more realistic scenario, where the liver
anatomy is covered from all sides (right lobe was more visible
compared to the left lobe). Future studies should analyze
additional real-case scenarios using the torso phantom, to
further investigate of the applicability and performance of the
proposed methodology.

While the calculated distances between the generated point
clouds and the corresponding registered liver mesh do not
serve as a direct measure of registration accuracy, yet when
combined with manually annotated successful feature match-
ing, they provide an approximation of the Hausdorff-distance
and the stability of the frame-by-frame registration pro-



TABLE I
THE TABLE SUMMARIZES FRAME COLLECTION, FEATURE MATCHING SUCCESS RATES, AND VISUAL SCENARIOS FOR EACH TEST CASE BASED ON [15].

cess (see Fig. 2). Large scale head movements while wearing
the Hololens can impact registration stability, as indicated by
the increase in calculated distances during the rotation phases.
However, normal head movements during static phases do not
directly affect registration stability. Although the calculated
RMSE value of 13±4.8 mm is in the same range of calculated
registration errors of other works, which solely use Hololens
for registration [2], the process of selecting correspondences
manually requires optimisation. In future work, the registra-
tion accuracy should be calculated using clearly identifiable
embedded fiducials in the liver phantom.

It is worth noting that the utilization of a unique-color phan-
tom in our experiments offers several advantages, including
facilitating label generation and providing realistic depth fea-
tures. These factors contribute to maximizing the performance
of segmentation algorithms. This work specifically aimed to
investigate the characteristics of the sensor point cloud, which
are influenced by both, the sensor properties and liver anatomy,
along with the minimum requirements for real-time tracking
and registration. In real-world experiments, the liver shows
lower contrast compared to the surrounding tissue, potentially
leading to artifacts such as a reduced number of liver points or
false positives, which can limit the accuracy of registration. On
the other hand, including texture information could potentially
provide more features for the registration process. Leveraging
texture information to enhance the tracking and registration
performance is subject to investigation in future studies.
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