
  

  

Abstract—Early Onset Ataxia (EOA) and Developmental 
Coordination Disorder (DCD) are two pediatric movement 
disorders characterized by similar phenotypic traits, often 
complicating clinical differential diagnostics. Despite the 
recognized reliability of current clinical scales like the Scale for 
the Assessment and Rating of Ataxia (SARA), their dependence 
on specialist expertise, time-consuming nature, and inherent 
subjectivity can potentially limit their efficacy in assessing 
movement disorders, thereby underscoring the need for more 
objective, and efficient diagnostic methods. This study 
introduces a novel approach that utilizes 2D video recording in 
the coronal plane coupled with pose estimation to differentiate 
gait patterns in children with EOA, DCD, and healthy controls 
(HC). An attention-based Graph Convolutional Network (A-
GCN) was proposed for the classification process, achieving an 
f1-score of 76% at the group level. The model incorporates 
channel-wise attention to stress the semantic nuances of body 
joints, and temporal attention to highlight important sequences 
in gait patterns. These mechanisms enhance the model's ability 
to accurately classify EOA and DCD. Our results demonstrate 
the potential of this method to improve diagnosis and 
understanding of movement disorders, thereby paving the way 
for more targeted treatment strategies. The code is available at 
https://github.com/jiudaa/Attention-basedGCN-EOA.git. 

Index Terms— Early Onset Ataxia (EOA), Developmental 
Coordination Disorder (DCD), Graph Convolutional Network 
(GCN), deep learning. 

I. INTRODUCTION 
Early Onset Ataxia (EOA) and Developmental 

Coordination Disorder (DCD) are both pediatric movement 
disorders which feature symptoms of motor incoordination. 
Gait analysis is an important tool in assessing the presentation 
and severity of the disorder. However, symptom overlap often 
complicates differential diagnosis. In a clinical setting, a 
common method of assessing ataxia is through semi-
quantitative rating scales, specifically the Scale for the 
Assessment and Rating of Ataxia (SARA) [1]. While SARA 
is accepted for clinical use, it requires experienced specialists 
for interpretation, is time consuming, and has inherent 
subjectivity that may impact its results [2]. These 
characteristics limit its ability to evaluate movement disorders, 
emphasizing the need for more efficient and objective 
diagnostic tools. 

Use of wearable inertial sensors could address these 
limitations offering a more objective assessment of motor 
incoordination [3]. However, these devices require additional 
preparation and calibration, hindering their widespread 
applicability in clinical settings. Alternatively, pose estimation  

 
 

techniques, like AlphaPose [4], can extract body joint position 
and movement from plain videos. This technique could help 
discern differences between EOA, DCD, and healthy control 
groups by analyzing the motion trajectories of various skeleton 
joint points. This approach is not only simple and convenient 
but also holds significant practical value due to its applicability 
in real-world clinical settings. Moreover, insights gained using 
this methodology could enhance our understanding of these 
disorders and aid in the early detection and treatment planning.  

In recent years, various studies have used pose estimation 
for the analysis and identification of neurological diseases [5-
7]. Lu et al. [5] proposed a double-Features double-motion 
network to assess Parkinson's Disease motor severity with 
SORT [8] and SPIN [9] for extracting 3D body joint locations. 
Wang et al. [6] used support vector machine to detect 
abnormal gait with 2D skeleton data from AlphaPose [4]. 
GCNs [10-12] have also proven effective in managing 
skeleton data, primarily due to their aptitude for accurately 
modeling the topological connections inherent to the human 
body. Yan et al. [10] introduced a learnable edge importance 
weighting strategy aimed at implementation of graph-based 
convolution as Spatio-Temporal Graph Convolutional 
Networks (ST-GCN) for skeleton based action recognition. 
Guo et al. [11] proposed a two-stream spatial-temporal graph 
convolutional network (2s-ST-AGCN) for video assessment 
of Parkinson's Disease gait motor disorder. However, a 
significant limitation of the existing literature is the lack of 
extensive studies on how these techniques can be integrated 
into routine clinical practice. The current project aims to create 
a movement disorder assessment method with pose estimation 
and graph based convolution. This approach leverages the 
capabilities of free hand single camera video footage to 
classify and differentiate between EOA and DCD, providing a 
simpler, yet effective alternative to existing methodologies. 

II. DATASET 
This study was conducted at the University Medical 

Center Groningen in The Netherlands, in compliance with 
local research ethics and integrity standards. A total of 84 
children participated in the experiment. Informed consent was 
obtained from all participating children over the age of 12, 
and from the parents or guardians of all participants. As part 
of their diagnostic evaluations, the EOA and DCD patients 
underwent a range of tests at the Department of (Pediatric) 
Neurology. These evaluations potentially included radiologic 
(MRI), metabolic, electromyography, muscle ultrasound, 
laboratory, and genetic tests to rule out other potential 
underlying neurological disorders. 
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All children were asked to walk in a straight line along a 
corridor, make a 180-degree turn, and return to their starting 
position. This activity was in accordance with the guidelines 
for the regular gait task outlined in the SARA. A single 
experimenter stationed at the end of the corridor recorded the 
children's movements using a 2D video camera with different 
resolutions and frame rates, but resampled to a resolution of 
1280 × 720 and 30 frames per second. Each video was divided 
into segments, categorized into four distinct types: (1) 
walking towards the camera, (2) walking away from the 
camera, (3) standing still, and (4) making a turn. The study's 
primary focus was on video segments featuring the children 
walking towards or away from the camera. Any frames in 
which body parts were obscured or lost were excluded from 
further analysis. This was due to the limitations of the 2D pose 
estimation algorithm used, which was unable to accurately 
detect skeletons in such frames. Finally, 240 video data 
segments from 84 participants (32 EOA, 34 healthy controls, 
18 DCD) were utilized for skeleton dataset analysis. 

III. METHODS 
Figure 1 outlines the entire process for quantitatively 

assessing gait using freehand 2D camera recordings.  

A. Skeleton Extraction 
We employed AlphaPose to estimate the 2D positions of 

skeleton keypoints. A Yolo-v3 detector, pretrained on the 
MSCOCO dataset, was used for detecting individuals in the 
video frame. Subsequently, resnet50 was used to determine 
the final locations of each keypoint. Since videos may contain 
multiple other people, detecting and tracking the participant 
was crucial. To do this, PoseFlow was used to match the 
skeleton to the same subject throughout the recording. For 
each frame, the model provided 2D coordinates (in pixels) 
and a prediction confidence probability for all 17 keypoints  
(nose and bilateral eyes, ears, shoulders, elbows, wrists, hips, 
knees, and ankles). 

B. Preprocessing 
We applied several preprocessing steps to the extracted 

skeleton data. First, to address missing keypoints in some 
frames, linear interpolation was used to estimate their 
positions by considering the values of neighboring keypoints. 
Second, to maintain consistency across frames, coordinates 

were transformed so that the mid-shoulder keypoint served as 
the origin in each frame, removing any positional offset 
caused by participant movement and providing a common 
reference point. Third, to minimize noise and fluctuations, 
average filtering was applied, calculating the average value of 
keypoints within a window of 9 frames, effectively smoothing 
the data and attenuating the effects of outliers or abrupt 
changes. Fourth, we segmented the data into smaller, more 
manageable portions using a sliding window approach, where 
each window contained 120 frames and had an overlap of 60 
frames with the subsequent window. This facilitated the 
extraction of local features from the time series data, allowing 
for a more comprehensive analysis of gait patterns. Moreover, 
it also resulted in the generation of more samples, thereby 
bolstering the training process of our model. 

C. Attention-based Graph Convolutional Network  
Graph Convolution: When considering graph convolution, 

we can conceptualize the human skeleton as a graph, denoted 
as G	 = 	 (V, E)  with V a set of N vertices (or joints) 
represented as {*!", *!#, . . . , *!$} . As our model input, the 
feature vector at a node, F!!", comprises x and y coordinates 
as well as the estimation confidence of the i-th joint at frame 
t. The edge set, E, is formulated as an adjacency matrix A in 
ℝ%&% . Each element, .'( , in this matrix signifies the 
connection strength between vertices *' and *(. The graph 
convolution operation in layer l + 1 collects local 
neighborhood information to refresh the node features, which 
can be represented as:  

F(l + 1) 	= 	σ(D)
!
"	567)

!
"F(l)W(l))      (1) 

Where D' = ∑ A:( ij, 56 = A + I is the adjacency matrix of an 
undirected graph, I is the identity matrix, W(l) is a learnable 
weight matrix, and σ(·) is set as the ReLU activation function. 

Channel-wise Attention (CWA): The channel-wise 
attention mechanism refines the interaction between different 
joints [13]. This attention mechanism focuses on the fact that 
some joints and connections might be more important than 
others.  

CWA(=) 	= >(=) 	∗ 	@(ABCDE.=(F(=)))      (2) 

An embedding function, θ(x), is applied to the input 
features x using a 1x1 convolution. The function θ(x) captures 
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Figure 1. The proposed pipeline: (a) pose estimation to obtain the skeleton data, (b) preprocessing of skeleton data, (c) data augmentation 
using sliding window overlapping, (d) skeleton-based modelling, and (e) prediction of the movement disorders. 



  

varying aspects and features of the input data. A softmax 
operation is then applied to the output matrix, yielding a 
probabilistic understanding of the interaction among channels. 
Following this, a pooling operation P(*) is performed to 
reduce the dimensionality and extract dominant features. 
Finally, conducting an element-wise multiplication of this 
attention matrix with the features from a 1x1 convolution g(x) 
helps modulate the channel-wise feature responses according 
to their respective importance as shown in Figure 2 (b). 

Temporal Attention (TA): The temporal attention employs 
an attention mechanism tailored for time series data in neural 
networks. By using a 1D convolution layer followed by a 
sigmoid function, this TA class enables the model to learn to 
focus on crucial time steps within the sequence data as:  

TA(=) 	= =	 · 	AI>EBIJ(K(@(=)))     (3) 

The process begins with a global average pooling operation 
P(x) which aims to reduce the dimensionality of the data. 
Subsequently, a 1D convolution layer, denoted by φ(*), is 
used to discover local temporal patterns in the sequence data. 
The sigmoid function then assigns a set of probability-based 
weights to each time step, reflecting their respective 
importance. In the final step, these attention weights are used 
to modulate the original input features, effectively amplifying 
features deemed important while suppressing those identified 
as less relevant as shown in Figure 2 (c).  

IV. EXPERIMENTAL RESULTS 

A. Implementation Details 
Our experiments were run on the GPU Nibbler HPC cluster 

of the University Medical Center Groningen. To mitigate the 
potential for overfitting given our limited dataset size, we used 
a five-fold cross-validation. Clips from the same participant 
were not split between training and testing sets. We used the 
Adam optimizer for training, with a batch size of 8, a learning 
rate of 0.001 that decayed by half every 50 epochs, up to a 
maximum of 200 epochs. The total model training time was 
about nine hours for one model. To enhance the performance 
of the model, we incorporated a voting mechanism where each 
sub-clip was labeled in accordance with the overall label of the 
patient and the final prediction was determined by the majority 

vote across the sub-clips. This approach not only augmented 
the dataset, but also bolstered the system's robustness. Results 
reported are the best obtained for each model. 

B. Comparing with State-of-the-art Methods 
To assess the efficacy of our proposed A-GCN model, we 

compared it with the following models: 1) Conv1D: A 1D 
convolutional neural network that includes three 1D 
convolutional layers. 2) LSTM: A Long Short-Term Memory 
network with a fully-connected layer. 3) ST-GCN (Spatial 
Temporal Graph Convolutional Network) [10]: utilizes graph 
convolution and was initially applied for action recognition. 
4) CTR_GCN [12]: A Channel-wise Topology Refinement 
Graph Convolution Network designed to effectively learn and 
refine topologies for different channels within GCN. 

TABLE I 

THE COMPARISON WITH STATE-OF-THE-ARTS MODELS. 

Models Mean F1  EOA HC DCD 
Conv1D 0.64 0.66 0.72 0.49 
LSTM 0.66 0.70 0.71 0.51 

ST-GCN 0.72 0.79 0.72 0.62 
CTR_GCN 0.71 0.74 0.74 0.61 

A-GCN 0.76 0.79 0.81 0.68 

A-GCN, with an average F1-score of 0.76 at the group level 
with 0.79 for EOA, 0.81 for HC and 0.68 for DCD,  
outperformed the other models in distinguishing between 
EOA, DCD and HC (Table I). These results suggest that the 
incorporation of the attention mechanism in A-GCN enhances 
the model's ability, outperforming other popular deep learning 
models applied to our dataset. 

C. Ablation Studies 
 In our ablation study, we conducted a series of 

experiments with networks of varying complexities and 
configurations. Three types of networks were considered with 
different depths, specifically, 4-layer, 7-layer, and 10-layer 
models. These networks were further evaluated in three 
different conditions: without channel-wise attention, without 
temporal attention, and without both channel-wise and 
temporal attention.  
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Figure 2. The detailed implementation of our proposed A-GCN model, presented in three key components: (a) an overview of the single 
layer A-GCN structure, (b) the fundamental block of the channel-wise attention module, and (c) the essential element of our temporal 
attention module. 



  

It was shown that the depth of the network and the 
incorporation of attention mechanisms play an important role 
in the model's performance (Table II). When comparing the 
networks based on depth, it was found that the 7-layer 
network performed optimally, showing the best balance 
between complexity and accuracy. The 4-layer network, 
being less complex, did not have the capacity to capture 
intricate patterns in the data, leading to a lower performance. 
Conversely, the 10-layer network, although more complex, 
did not improve the performance, indicating a potential 
overfitting scenario. Examining the role of attention 
mechanisms, it's clear that both channel-wise and temporal 
attentions contributed positively to the model's performance. 
When these attention mechanisms were removed individually 
or jointly from the model, a drop in performance was 
observed. The experiments underscore the value of the 
attention mechanism and emphasize the importance of model 
depth optimization.  

TABLE II 

THE ABLATION STUDY RESULTS. 

Models F1 score 
4 layer A-GCN 0.73 

4 layer w/o CWA 0.71 
4 layer w/o TA 0.73 

4 layer w/o CWA&TA 0.71 
7 layer A-GCN 0.76 

7 layer w/o CWA 0.75 
7 layer w/o TA 0.72 

7 layer w/o CWA&TA 0.72 
10 layer A-GCN 0.72 

10 layer w/o CWA 0.70 
10 layer w/o TA 0.69 

10 layer w/o CWA&TA 0.69 

V. DISCUSSION & CONCLUSION 

This study presents a novel, non-invasive method for 
assessing and differentiating between EOA and DCD in 
pediatric populations, by applying computer vision and deep 
learning techniques. Leveraging the ease of 2D video 
recording and the power of pose estimation, our approach 
offers an accessible and efficient alternative to traditional, 
more invasive diagnostic tools, which often require specialist 
expertise and are time-consuming. The effectiveness of our 
method was evaluated and compared against established 
methods. Despite the limitations imposed by the small dataset, 
our model, equipped with attention mechanisms and 
optimally configured with a 7-layer depth, demonstrated 
competitive performance. These findings reinforce the value 
of pose estimation and GCN in movement disorder 
classification tasks and show a promising future for deep 
learning in clinical settings. 

In conclusion, this work supports objective and efficient 
diagnosis of complex pediatric movement disorders like EOA 
and DCD. However, further work is needed to validate this 
approach with larger, more diverse datasets and to investigate 
its generalizability to other motor disorders. In addition, as a 
future direction, we aim to make the network more 

interpretable for clinical usage. This would include 
development of tools and techniques to visualize and 
understand the decision-making process of the model, which 
can further enhance trust in the predictions and inform clinical 
decision making. Despite these challenges, we are optimistic 
about the potential of this methodology to make a substantial 
contribution to the field of neurology and, most importantly, 
to the lives of the patients affected by these disorders. 
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