
  

  

 
Abstract— Cardiovascular disease (CVD) is the leading 

cause of death worldwide. Patients with CVD may also 
suffer from mental disorders, such as, depression which is 
a common comorbid condition. However, the risk factors 
for depression in CVD patients have not been extensively 
investigated in the literature. In this work, we utilized a 
hybrid and explainable AI-empowered workflow to 
identify underlying factors for CVD and depression. 
Towards this direction, we acquired a subset of the UK 
Biobank (UKB), including 157,302 patients with 
depression assessment and CVD. At the first step, 701 
features were selected from the UKB, upon clinical 
guidance, including demographics, blood tests, mental 
examinations, and clinical assessments. An automated 
biobank data curation pipeline was applied to transform 
the UKB subset into a high-quality dataset by removing 
outliers, and genes with increased variability. A hybrid 
version of the XGBoost classifier was used to classify 
patients with CVD and depression, where a scalable loss 
function was utilized to overcome overfitting effects. Our 
results demonstrate that we can diagnose patients with 
comorbid conditions of CVD and depression with 0.80, 
0.82, accuracy, and sensitivity, respectively, where the 
mood swings, BMI, and age, were identified as 
biomarkers, among others. To our knowledge, this is the 
first case study aiming to distil knowledge from the UKB 
to identify cost effective risk factors for patients with CVD 
and depression. 

 
Clinical relevance— Using a hybrid and explainable AI 

model, as the one presented in our work, we can effectively 
identify patients with both diseases in a cost-effective way since 
the identified and used biomarkers can be easily collected in 
everyday clinical practice. 

I. INTRODUCTION 
Cardiovascular disease (CVD) is the leading cause of 

death worldwide. In parallel, depression is the third leading 
cause of non-fatal health loss globally [1]. It has been 
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proposed that depression and CVD present a bidirectional 
relationship in which a CVD patient is more likely to be 
depressive and vice versa [2], [3]. Depression and CVD share 
common risk factors, such as age, inflammation and oxidative 
stress [4]. Regardless of the shared risk factors between CVD 
and depression, the link between the two diseases is still 
unclear.  

The recent years, machine learning based methodologies 
have been developed to predict depression. The increase of 
data availability contributed to this research area. For 
example, depression was predicted with 86.20% accuracy 
employing the Random Forest (RF) classifier and using data 
from 6,588 patients including hundreds of features [5]. RF 
presented the highest accuracy also in another study focused 
on an elderly population. In that case, the predictive model 
has 91% accuracy applied to an external validation dataset 
[6]. In a similar concept, many other studies have been 
presented with the general aim of diagnosis or prediction of 
depression under different populations or pathologic 
conditions [7], [8]. None of these studies, however, has 
focused on the classification of patients with both CVD and 
depression across large scale data from biobanks.  

To address this need, we propose a hybrid, explainable AI-
empowered pipeline to identify patients with comorbid 
conditions by harnessing knowledge from the well-known 
UK Biobank database which provides clinical, lifestyle, and 
omics related information regarding the CVD and depression. 
An automated biobank data curation workflow was applied 
on each batch to remove outliers, and genes with increased 
variability. A hybrid version of the XGBoost algorithm was 
trained on the aggregated, curated UKB subset to classify 
patients with CVD and mental disorders by utilizing a hybrid 
loss function which is resilient against overfitting effects. 
Explainability analysis was finally applied to identify risk 
factors for CVD and mental disorders, such as, mood swings, 
fed-up feelings, BMI and age. Our results highlight the 
favorable performance of the hybrid XGBoost which 
achieved similar results (sensitivity 0.86, specificity 0.73) 
with the conventional XGBoost (sensitivity 0.83, specificity 
0.76) and the Random Forests (sensitivity 0.87, specificity 
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0.71) algorithm. Since the identified risk factors can be easily 
obtained in clinical practice, we can efficiently detect patients 
with both diseases using an explainable AI model, such as the 
one presented in our work. 

II. MATERIALS AND METHODS 

A. An overview of the workflow 
According to Fig. 1, the workflow for the analysis of 

biobank data consists of two primary stages, namely: (i) the 
incremental data curation stage, and (ii) the hybrid machine 
learning and explainability analysis stage. The workflow uses 
as input an anonymized subset from the UKB biobank 
(Section B) with 𝑀 patients and 𝑁 features. The dataset is 
divided into 𝑄 batches, with 𝐽 patients, where 𝑄 ൐ 2. Each 
batch is introduced into an efficient data curation pipeline 
(Section C) to automatically remove outliers, duplicated 
features, and genes with increased variability, as well as, 
incompatible and inconsistent fields across the data. The 
pipeline produces a data quality evaluation report and a 
curated dataset. Each curated batch is then collected and 
aggregated to formulate the final curated dataset with 𝑀 
patients and 𝑁′ records, where 𝑁ᇱ ൑ 𝑁. 

 
Figure 1. An illustration of the proposed workflow. 
A hybrid machine learning workflow based on boosting 

ensembles is applied on the high-quality biobank data to shed 
light into risk factors for CVD and mental disorders through 
the application of a hybrid loss function which was explicitly 
designed to deal with overfitting effects across complex data. 
Class imbalance handling methods are also used to deal with 
the significant difference among the number of patients in the 
control group and in the target group (those having both CVD 
and mental disorders). The performance of the trained model 
is evaluated based on a stratified cross validation schema by 
estimating the accuracy, sensitivity, specificity, and area 
under the ROC curve (AUC). Shappley additive explanation 
analysis is finally applied to identify risk factors for CVD and 
MD. 

The workflows were executed under the high-
performance computing infrastructure (HCI) which has been 
explicitly designed for data intensive tasks as part of the 
PRECIOUS system (MIS 5047133). The HCI currently 
includes 576 Intel(R) Xeon(R) Gold 5220R physical cores, 
86000 CUDA cores, 4.6 TB RAM, and 0.5 PB raw storage. 

B. Data origins 
Anonymized data were obtained from 157,302 patients 

and 701 features related to cardiovascular diseases and mental 

health assessment (e.g., demographics, laboratory tests, blood 
biomarkers) from the UK Biobank (UKBB), upon approval. 
UK Biobank is a large-scale biomedical database and research 
resource, containing in-depth genetic and health information 
from half a million UK participants. The database is regularly 
augmented with additional data and is globally accessible to 
approved researchers undertaking vital research into the most 
common and life-threatening diseases [9]. In this work, we 
selected a sub-set population of 157,302 individuals from 
whom mental assessment for depression was performed using 
specialized questionnaires. In this subset, 37,294 patients 
were diagnosed with at least one CVD condition, 31,856 
patients were diagnosed with depression and 7,644 with both 
the comorbid conditions.  

C. Incremental data curation based on batch processing 
Considering the large size of the UKBB database and its 

underlying complexity, the available anonymized dataset was 
split into 15 batches, where each batch included 10,000 
patients and 701 features. Then, a fully automated medical 
data curation pipeline which was developed in Python and 
was presented in a previous study [10] was incrementally 
applied on each batch to generate data quality evaluation 
reports along with the curated datasets. Additional memory 
buffer functionalities were added as part of the workflow to 
improve the execution time. Data incompatibilities, such as, 
mixed data types and additional data inconsistencies, such as, 
data type representations were automatically resolved. Genes 
with increased variability were identified by estimating the 
covariance matrix from the input space and eliminating pairs 
of genes with increased variability. The isolation forests (IF) 
algorithm was trained on the available data to detect and 
remove outliers. The intermediate curated batches from each 
round were aggregated to extract metadata information, 
including the total number of missing values, the number of 
discrete and continuous features, the number of features with 
good (no missing values), bad (more than 30% missing 
values, and fair (less than 30% missing values) quality. The 
bad features were removed from the analysis. The final high-
quality UKB subset included 157,302 patients and 335 
features (those with good and fair quality). 

D. Hybrid machine learning and explainability analysis 
1) Hybrid machine learning 
The extreme gradient boosting (XGBoost) technique has 

excelled in numerous Kaggle contests, and boosting 
ensembles have been frequently employed to handle 
classification tasks with improved performance [11]. The 
objective is to find an estimated function , 𝐺෨ሺ𝒙ሻ, mapping 𝒙 
to 𝑦 that minimizes the expected value of a loss function, 
suppose 𝐿ሺ𝑦,𝐺ሺ𝒙ሻሻ, given a collection of 𝑁-observations, say 
{(𝒙𝟏,𝑦ଵ), (𝒙𝟐,𝑦ଶ), …, (𝒙𝑵,𝑦ே)}. At stage 𝑞 ∈ 𝑄, the XGBoost 
aims to derive mapper estimations, say 𝐺௤ሺ𝑥ሻ, in a sequential 
manner, as in [11], [12]: 𝐺௤ሺ𝑥ሻ ൌ 𝐺௤ିଵሺ𝑥ሻ െ 𝛾௤෍∇ீ೜షభ𝐿ሺ𝑦௡,𝐺௤ିଵሺ𝑥௡ሻே

௜ୀଵ ሻ, (1) 

where the objective can be approximated by Taylor’s 
theorem: 



  

𝐵ሺ𝑞ሻ ൎ෍൤𝑙൫𝑦௜ ,𝑦෤௜,௤ିଵ൯ ൅ 𝑝௜𝑔௤ሺ𝑥௜ሻ ൅ 12 𝑡௜𝑔௤ଶሺ𝑥௜ሻ൨ ൅ 𝑟ே
௜ୀଵ , (2) 

where 𝑝௜ and 𝑡௜ are the first and second order gradients of the 
loss function, respectively. However, a significant and rather 
crucial issue in the XGBoost schema lies on the fact that the 
early additions of regression trees to the ensemble tend to 
have a greater influence on the decision-making process than 
those trees that are added later in the ensemble. Dropout rates 
[13] can overcome this problem by incorporating a portion of 
discarded trees into the decision-making process. In fact, 
trivial trees may be avoided since the over-fitting problem can 
be solved using drop trees. However, the dropout rate is 
predetermined and frequently arbitrarily chosen, which has a 
significant negative impact on how well the XGBoost 
performs. To overcome this problem, we used a hybrid loss 
function presented in previous studies [14] that combines the 
modified Huber loss and the logcosh loss, where the delta 
value (i.e., the scale factor in the modified Huber loss) is 
employed to account for the hybrid topology’s shape. In the 
“dart” booster, we also link the delta value to the dropout rate 
so that higher dropout rates can result in steeper loss 
topologies that prevent overfitting. To this end, the objective 
function in Eq. (2) can be re-written as:: 𝐵ሺ𝑞ሻ ൎ෍൤𝑙൫𝑦௜ ,𝑦෤௜,௤ିଵ൯ ൅ 𝑡௜𝑔௤ሺ𝑥௜ሻ ൅ 12 𝑝௜𝑔௤ଶሺ𝑥௜ሻ൨ே

௜ୀଵ ൌ 

ൌ෍൤𝑙൫𝑦௜ , 𝑦෤௜,௤ିଵ൯ ൅ 𝑡𝑎𝑛ℎሺ𝑖ሻ𝑑/√𝑠ே
௜ୀଵ൅ 12 1/𝑐𝑜𝑠ℎଶሺ𝑖ሻ√𝑠/𝑠൨ , 

(3) 

where 𝑑 is the scale of the topology, and 𝑠 in an 
approximation factor. The conventional XGBoost algorithm 
with the “gbtree” booster and the XGBoost with the “dart” 
booster from Python’s xgboost package were used for 
comparison purposes. Random downsampling with 
replacement was applied to deal with the class imbalance to 
ensure a 1:1 ratio among the control and the target groups. 
The whole process was applied ten times to avoid biases in 
the training procedure. Additional classifiers like the 
AdaBoost and the Random Forests were also used in the 
analysis for comparison purposes. 

2) Explainability analysis 
An innovative approach from coalition game theory called 

the Shapley Additive explanation analysis (SHAP) can 
provide insight into the decision-making process of an AI 
model [15]. To achieve this, SHAP makes use of explanation 
models that produce interpretable and explicable 
categorization results. The SHAP value of a feature 𝑑௝ ∈ 𝐷, 
say 𝑆௝, is defined as the total contribution of this feature to the 
outcome, given a subset of input features, say 𝑃∁ሼ𝑑ଵ,𝑑ଶ, … ,𝑑௓ሽ, from a larger set of 𝐾-features ሼ𝑑ଵ,𝑑ଶ, … ,𝑑௄ሽ, where 𝑍 ൑ 𝐾, as in [15]: 𝑆௝ൌ෍ |𝐷|! ሺ𝑃 െ |𝐷| െ 1ሻ!𝑃! ሺ𝑓ௗሺ𝐷 ∪ ሼ𝑑ሽሻ െ 𝑓ௗሺ𝐷ሻሻ, (4) 

where, 𝑓ௗሺ𝐷ሻ is the expected value of the function 
conditioned on 𝑃, 𝐾 is the set of all input features, and |𝐷| is 

the number of features in 𝐷. The number of observations that 
are connected to a specific feature was also counted using the 
cover metric, by estimating the number of splits that each 
feature participated in the ensemble. 

III. RESULTS 

A. Batch based data curation 
According to Fig. 2, the initial UKB subset (701 features 

and 152,307 instances) was split into 16 batches; 15 batches 
with 701 features and 10,000 instances, and 1 batch with 701 
features and 7,302 instances. The incremental data curation 
workflow presented in Section C was applied to each batch 
and the results were aggregated. In total, 111 features had 
“good” quality, 294 features with “fair quality”, in average. 
The 296 features with “bad” quality were discarded. The total 
percentage of detected outliers was 0.5% and the percentage 
of features with unknown value types was 0.044%. The final 
dataset included 157,302 instances and 400 features. 

 
Figure 2. Indicative instances of the curated batches along with summary 
statistics (averaged across the total number of pre-defined batches). 

B. Hybrid AI model performance 
According to the classification results, the three 

algorithms perform equally good (Table II). In particular, the 
same accuracy is observed (0.79) for all models. The highest 
sensitivity is found using the RF classifier, while the hybrid 
XGBoost presents a better combination of sensitivity and 
specificity having in mind that the highest the sensitivity the 
better for a diagnostic model applied in the clinical practice. 
The highest AUC is found for the hybrid XGBoost and the RF 
(Table II, Fig. 1).  

TABLE I.  CLASSIFICATION RESULTS (NUMBER OF CONTROLS: 7,644, 
NUMBER OF TARGETS: 7,644). 

 XGBoost Random Forests Hybrid 
XGBoost 

Accuracy  0.79 0.79 0.79 
Sensitivity  0.83 0.87 0.86 
Specificity  0.76 0.71 0.73 
AUC 0.87 0.88 0.88 

C. Risk factors for CVD and mental disorders 
Fig. 3 provides the ROC curve of the hybrid XGBoost 

classifier, whereas Fig. 4 provides the information-dense 
summary of how the top features in the dataset impact the 
model’s output, where in each instance the given explanation 
is represented by a single dot on each feature row. According 
to Fig. 3 and Fig. 4, it is clear that for the comorbid condition 



  

of CVD and depression, the features of the model are 
distributed into two main categories: one mostly related to the 
patient mood, and one mostly related to cardiovascular 
disease and blood biomarkers. Also, we can easily conclude 
that all the biomarkers can be easily measured in clinical 
practice, meaning that a cost-effective solution of the 
diagnosis of CVD/depression is possible. More specifically, 
the feelings of the individual (unenthusiasm, tenseness, 
tiredness) are highly associated with the comorbid condition. 
An interesting finding is that although the LDL direct and 
cholesterol are highly ranked, they have the opposite direction 
than the expected (high cholesterol – high probability of 
CVD). This may be the effect of getting lipid lowering 
treatment such as using statins.  

 
Figure 3. ROC curve of the hybrid XGBoost classifier. 

 
Figure 4. Information-dense summary per feature impact in the classification. 

IV. DISCUSSION AND CONCLUSIONS 
In this work, for the first time, we present an AI-

empowered pipeline to detect patients who are most likely 
diagnosed with CVD and depression. For this purpose, we 
utilized the well-known cohort of UKB, which provides 
information about the CVD and depression. A hybrid 
representation of the XGBoost classifier has been employed 
to identify the patients with comorbid conditions. This 
classifier performed equally well with other traditional 
classifiers. Depression is associated with complications for 
optimal CVD management, including low adherence to 
healthy lifestyles and taking medications in accordance with 
medical recommendations. Also, it may increase mortality, 

disability, healthcare expenditures and reduced quality of life 
among patients with CVD.  

Unfortunately, strategies for screening and treating 
depression are poorly implemented in patients with CVD. 
Using a hybrid and explainable AI model, as the one 
presented in our work, we can effectively identify patients 
with both diseases in a cost-effective way since the identified 
and used biomarkers can be easily collected in everyday 
clinical practice. 
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