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Abstract—Post-surgical patient-reported outcomes (PROs)
serve as a crucial subjective measure of surgical success for
adolescent idiopathic scoliosis (AIS) patients. Leveraging pre-
operative patient information to predict post-operative PROs is
instrumental in improving pediatric patient care and providing
invaluable insights for clinical decision-making. Recently, deep
learning techniques have demonstrated encouraging results in
developing predictive models for clinical decision support. How-
ever, the inherent black-box nature makes them non-interactive
and challenging to troubleshoot during the training phase. To
mitigate this issue, our study introduces an interactive concept
bottleneck model to predict subjective rehabilitation outcomes for
AIS patients. We assess three learning schemas - independent,
sequential, and joint - to first comprehend the concepts, which
are a set of post-operative radiographic data available during
the training phase. Subsequently, these acquired concepts are
employed to predict post-operative patient rehabilitation out-
comes across five domains: pain, function, general satisfaction,
self-image, and mental health. Our results demonstrated improve-
ment compared to the existing baseline, with the joint learning
schema yielding the highest F1 score in the function and pain
domains, while sequential learning recorded the highest F1 score
in the mental health and self-image domains. This proposed
framework harbors the immense potential to aid pre-operative
surgical planning and further enhance the transparency of AI
models, thereby supporting real-world clinical decision-making.

Index Terms—concept bottleneck model, explainable artificial
intelligence, adolescent idiopathic scoliosis, pediatric healthcare

I. INTRODUCTION

Adolescent idiopathic scoliosis (AIS), an abnormal lateral
curvature of the spline, is one of the most common types of
spinal deformity for pediatric patients [1]. The National Scol-
iosis Foundation estimates a total number of approximately 6
to 9 million cases in the United States. Although the spinal
condition is manageable, it can impact the quality of life of
most people by limiting their respiratory function, activities,
and self-esteem, or even increasing the pain experienced [2]
Specifically, posterior spinal fusion (PSF) surgery aims to
stabilize the spine and provide relief to patients afflicted
with severe scoliosis. When it comes to this rare severity of
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Fig. 1: Concept bottleneck model leverages the input of pre-
operative patient demographics, radiographic measurements,
and survey outcomes. It utilizes a set of post-operative radio-
graphic as concepts to predict the post-operative PROs.

scoliosis, it is estimated that merely 38,000 such surgeries are
performed across the nation annually [3].

The Scoliosis Research Society 22R instrument (SRS-22R)
questionnaire1, initially designed as a disease-specific instru-
ment, is widely adopted to measure health-related quality of
life in patients with adolescent idiopathic scoliosis [2]. This
instrument offers a nuanced understanding of patient outcomes
and their well-being following medical interventions, facilitat-
ing continued enhancements in scoliosis care. It measures the
quality of life with 22 questions across five main domains,
including pain, self-image, mental health, satisfaction, and
function [4]. PROs, along with objective surgical correction
metrics determined by radiographic patient imaging, serve as
an important subjective measurement of treatment success.
However, pre-operative radiographic parameters currently used
during surgical planning have not been shown to correlate with
PROs in AIS [1].

The potential to accurately prognosticate surgical outcomes,
inclusive of life quality metrics, presents significant benefits
for AIS patients [5]. This predictive ability could serve as a
crucial tool for patients and their families, allowing them to set
up their expectations effectively. Moreover, it could enhance
the efficacy of pre-operative deliberations and counseling
sessions, thus ensuring a more comprehensive understanding
and preparation for the forthcoming procedure.

1https://www.srs.org/professionals/online-education-and-resources/patient-
outcome-questionnaires



In recent years, advanced deep learning techniques have
been adopted in clinical settings to facilitate clinical decision
support [6]. However, these models typically necessitate end-
to-end training, which is often non-interactive, making it
challenging to intercept errors that might transpire during
training. Additionally, the black-box nature of deep learning
models prevents their broader adoption in practical clinical set-
tings [6]. To address this concern, we develop an explainable
machine learning model, concept bottleneck neural network,
to enable the post-operative PROs predictions for surgical
decision-making of AIS patients (Fig. 1). Specifically, the
proposed interactive predictive model can learn the patient
radiographic measurements as important concepts and use
these concepts to predict the self-reported answers to the post-
operative SRS-22R questionnaire. The key contributions of
this work include:

• We develop a concept bottleneck model for comprehen-
sively predicting post-operative PROs with intermediate
concepts to improve model transparency for wide adap-
tation in clinical settings.

• We utilize the implicit association between radiographic
measurements and PROs to enhance the efficacy of the
model; this association has not been explored or leveraged
in prior research.

• The proposed clinical decision support system could
serve as a shared decision-making support tool for AIS
patients and families to set expectations about surgical
outcomes in pre-operative clinical visits.

II. RELATED WORKS

Predicting the quality of life a patient experiences after
a PSF surgical operation could prove invaluable for pre-
operative counseling and patient rehabilitation [5], [7]. With
recent advances in deep learning, researchers have adopted AI-
enabled tools in clinical settings to predict subjective surgical
outcomes and facilitate clinical decision support. In scoliosis
studies, Ames et al. [8] proposed a binary classification
approach for the post-operative SRS-22R responses prediction.
This method categorizes the lower three responses (scores 1-3)
as ’poor’ and the upper two responses (scores 4-5) as ’good’
across five domains. Besides, several studies [9], [10] sought
to refine predictions further by focusing on specific domains,
such as function and satisfaction. However, previous studies
usually focused on a narrow domain or few specific questions
and failed to provide comprehensive predictions to describe
post-operative patient results.

End-to-end machine learning models are usually non-
interactive, which complicates the process of error detection
during training [6], [11], [12]. In the computer vision task,
Koh et al. [13] introduced the idea of utilizing human-
understandable concepts to interpret model behavior. They
highlighted the potential of this training method to detect
and rectify errors that may surface during the prediction of
these concepts, and subsequently to adjust the final prediction.
Similar innovative training methodology has undergone refine-
ment and has found application across diverse domains [14].

However, to the best of our knowledge, none of the existing
studies leverage an explainable or interactive training process
for patient outcomes predictions to guide surgical decision-
making.

III. DATA COLLECTION

The inclusion criteria includes pediatric patients from 10 to
18 years diagnosed with AIS who underwent PSF surgery. A
cohort comprising 455 pediatric patients, with an average age
of 11.98 years, from Shriners Children’s hospitals satisfied the
inclusion criteria. Complete pre-operative and post-operative
follow-up data were available for 428 patients. All patients
were enrolled in a protocol that had obtained Institutional
Review Board (IRB) approval at each site. Pre-operative demo-
graphic information such as age, gender, and race, along with
smoking history, comorbidities, and results of neurological
assessments, were extracted from standardized EHRs during
patient visits. Clinical experts manually measured and curated
radiographic parameters from full-length, free-standing poste-
rior/anterior and lateral spine radiographs.

IV. METHODOLOGY

In this study, we develop an interactive concept bottleneck
model of post-operative PROs prediction for AIS patients, with
a special focus on SRS-22R questionnaires.

A. Concept Bottleneck Model Learning Schema

Our proposed concept bottleneck model incorporates two
distinct models: given the input pre-operative patient data
x, one model focuses on learning the intermediate set of
concept c (i.e., post-operative radiographic data), and another
dedicates to classifying post-operative PROs y. In addition, we
explore three distinct learning schemas, including independent
learning, sequential learning, and joint learning:

• Independent bottleneck learns the ground truth labels ŷ =
f̂(c) and concepts ĉ = ĝ(x) independently. It uses the
true concepts c and learned concepts ĉ to predict ŷ at the
training and testing, respectively.

• Sequential bottleneck first learns ĉ = ĝ(x), then using
this learned concepts ĉ it learns the labels ŷ = f̂(ĉ).

• Joint bottleneck learns both concepts ĉ and labels ŷ by
minimizing the weighted sum ŷ, ĉ = f̂(ĝ(x)).

Although the independent and sequential bottleneck learns
concepts similarly, they differ in terms of access to labels.
The sequential bottleneck uses predicted concepts to learn
the labels, while the independent bottleneck directly learns
from the true concepts and uses the predicted concepts at
testing time. On the other hand, the joint bottleneck uses
a hyperparameter λ to control the trade-off between the
concepts and label loss. Following previous studies [13], we
set λ = 0.01 for all joint learning experiments with the best
validation results.



Q3 Q7 Q13 Q16 Q20
0.0

0.2

0.4

0.6

0.8

1.0

SRS-22R

Mental Health

Q4 Q6 Q10 Q14 Q19
0.0

0.2

0.4

0.6

0.8

1.0

SRS-22R

Self-Image

Q5 Q9 Q12 Q15 Q18
0.0

0.2

0.4

0.6

0.8

1.0
Function

SRS-22R
Q1 Q2 Q8 Q11 Q17

0.0

0.2

0.4

0.6

0.8

1.0 Pain

SRS-22R

A
cc
ur
ac
y

Q21 Q22
0.0

0.2

0.4

0.6

0.8

1.0

SRS-22R

Satisfaction
Baseline
Independent 
Sequential
Joint

Fig. 2: Accuracy on predicting each individual outcome to the SRS-22R questionnaire. Questions are categorized into five
different subjective evaluation domains, including function, mental health, pain, satisfaction, and self-image.

TABLE I: The average precision, recall, and F1 score across each domain for the different learning schema and baseline model.

Precision Recall F1 ScoreDomain Baseline Ind. Sequential Joint Baseline Ind. Seq Joint Baseline Ind. Sequential Joint
Function 0.618 0.574 0.620 0.646 0.588 0.598 0.632 0.648 0.590 0.566 0.614 0.624
Pain 0.592 0.550 0.558 0.614 0.542 0.616 0.606 0.636 0.554 0.570 0.564 0.604
Mental Health 0.460 0.544 0.640 0.620 0.476 0.614 0.676 0.664 0.446 0.566 0.642 0.606
Self-Image 0.568 0.536 0.596 0.590 0.568 0.618 0.640 0.642 0.556 0.558 0.608 0.602
Satisfaction 0.700 0.565 0.630 0.630 0.695 0.645 0.680 0.665 0.690 0.580 0.625 0.630

B. Inputs, Concepts, and Outputs

The input for our model comprises patient demographic
information, preoperative radiographic measurements, and pre-
operative PROs (results from the SRS-22R questionnaire).
Subsequently, we utilize the 1-year post-operative radiographic
measurements, which serve as follow-up data on surgical
operation outcomes, as the concepts. These concepts encom-
pass 76 features such as ThL-Lumbar Apical Translation,
Lumbar Curve, and others. The final outputs or labels are
the 1-year post-operative PROs in response to the SRS-22R
questionnaire, which includes patient responses to each of the
22 questions. We split the entire patient data into 60%, 20%,
and 20% for training, validation, and testing, respectively.

C. Post-operative PROs Prediction

Our proposed model includes using a deep neural net-
work to discern the underlying concepts. This neural network
comprises three Dense layers for the learning of non-linear
mappings between features, augmented with two Batch Nor-
malization layers for stability and speed. To ensure stability
and speed, a Batch Normalization layer is connected to the
outputs of the first two Dense layers. The activation function
Rectified Linear Unit (ReLU) is integrated into the first two
Dense layers, aiding the network in learning complex patterns
and relationships. To prevent overfitting, we implement an
early stopping monitor to keep track of the loss during
training. Overall, this deep neural network model is designed
to learn the underlying concepts efficiently and facilitate
accurate predictions. The concept neural network was trained
through 200 epochs, utilizing the Adam optimizer and Mean
Absolute Squared Error (MAE) as the loss function. These
parameters ensured that the models were well-optimized and
able to accurately predict the desired concepts. For the final
classification, we employ an additional Multi-Layer Perceptron
(MLP) with Adam optimizer for multi-class classification.

V. RESULTS AND DISCUSSIONS

A. Main Results

We evaluate the effectiveness of the proposed concept
bottleneck model on the 1-year post-operative PROs prediction
using multiple evaluation metrics, including accuracy, F1
score, precision, and recall. Fig. 2 presents the accuracy of
each training schema on individual post-operative question
outcomes across all domains. Additionally, we present the
precision, recall, and F1 score in Table I to provide a more
comprehensive evaluation of the performance of each training
schema. Specifically, the F1 score provides a comprehensive
evaluation of multi-class classification by computing the har-
monic mean of precision and recall across each domain.

Upon comparing the individual performance of each training
approach against the others and the baseline neural network
without concept learning, it was observed that concept bot-
tleneck models generally outperformed the baseline models
across most questions. Specifically, the sequential and joint
training methods manifested marginally better results in most
instances. This trend is discernible in several other domains,
excluding the general satisfaction domain, where the baseline
surpassed the proposed training approaches in Q21, and the
sequential approach outperformed other methods in Q22.

B. Learning Schema Comparison

We then evaluate the effectiveness of the three proposed
training schemas, independent, sequential, and joint bottle-
neck. Specifically, we use MAE and RMSE, which measure
the difference between the predicted and actual values to eval-
uate the performance of the concept prediction model. From
Table II, we observed that the independent and sequential
training achieved the highest MAE and RMSE, indicating an
accurate estimation of the concept. The joint training method,
which prioritizes the prediction of the labels, achieved rela-
tively worse regression performance. Besides, the correlation
between the predicted and true concepts is shown in Fig. 3.



TABLE II: The regression model performance of the concepts
prediction with different learning schemas

Schema MAE RMSE
Independent 2.07 3.46
Sequential 2.07 3.46
Joint 2.26 3.86

Fig. 3: The Pearson Correlation between predicted and true
concepts within different learning schema.

It revealed that the various learning schemas are capable of
predicting individual concepts accurately.

Comparing three learning schemas, we observed a similar
performance on concept predictions between the sequential
and independent learning schemas. The potential reason could
be the training is contingent upon the concepts learned at both
the training and inference stages. On the other hand, in the
independent training approach, the training of 1-year post-
operative PROs relies on the true concepts, with the learned
concepts introduced to the model at the testing stage, as
shown in Fig. 4. If errors arising during concept prediction are
detected at the testing stage, the independent training approach
is likely to achieve better performance, given that it learns
based on the true concepts.

VI. CONCLUSION

We developed a clinical decision support system to facilitate
shared decision-making between orthopedic surgeons and pe-
diatric patients with idiopathic scoliosis. Considering the rare
condition with PSF surgery, our study leveraged a relatively
large pediatric AIS patient cohort from multiple clinical sites.
We developed a concept bottleneck model for comprehen-
sively predicting quality-of-life-related questions to improve
model transparency for wide adoptions in real-world clinical
scenarios. Specifically, we utilized the implicit relationship
between radiographic measurements and PROs to enhance the
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Fig. 4: Example of intervention within the independent training
schema during test stage, leading to a better prediction.

efficacy of the model, which could be generalized into future
studies. These efforts provide a scientific rigorous foundation
for guiding shared clinical decision-making utilizing precision
medicine to enhance pediatric scoliosis patient care. Our long-
term objective is to evaluate the comparative efficacy of AIS
treatments and to utilize patient quality-of-life instruments to
personalize treatment decisions for pediatric patients.
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