
  

  

Abstract— The diagnosis and assessment of attention deficit 

hyperactivity disorder (ADHD) in clinical practice heavily rely 

on subjective and biased scales. This study explores the 

feasibility of using actigraphy measurements to objectively 

assess and monitor the treatment response of ADHD in children 

receiving medication. A cohort of ten children underwent 

evaluation using three scales, one administered by child-

adolescent psychiatrists and two completed by the parents, both 

pre- and post-medication. In addition, two sets of actigraphy 

recordings were collected, each spanning seven consecutive days, 

before and after medication administration. The study revealed 

that changes in the median, mean, and skewness of accelerations 

in spherical coordinates exhibited stronger correlations with 

changes in the scale scores in comparison to other features. 

Additionally, binary classifications using feature sets with top 

correlations and PCA features defining 95% variability showed 

better predictions for ADHD treatment response assessed by 

TURGAY DSM-IV-S (82%) and WFIRS-life skills (81.4%) 

scores compared to WFIRS-school behavior (63.9%) scores. 

These findings represent the first reported correlations between 

ADHD scales and a broad range of features. Additionally, they 

demonstrate the feasibility of using actigraphy data to predict 

ADHD treatment response for the first time. 

 
Clinical Relevance— The utilization of actigraphy for 

objective and reliable measurement of ADHD symptoms and 

functional impairment can serve as a valuable complement to 

subjective evaluations conducted by parents and clinicians, and 

thus aiding in determining an effective treatment plan and 

identifying priority areas for intervention. 

I. INTRODUCTION 

Attention deficit hyperactivity disorder (ADHD) is a 
common neurodevelopmental issue affecting around 2% to 9% 
of children of school age in the world [1]. Inattention, 
increased motor activity, and impulsivity are the hallmarks of 
ADHD, which is characterized by dysregulated cognitive and 
behavioral processes [2]. 

ADHD is typically diagnosed through a combination of 
clinical evaluation, medical history review, symptom rating 
scales, and cognitive-neuropsychological tests [3]. In 
assessing therapy efficacy, various methods are employed, 
including the use of clinical assessment tools. One commonly 
used tool is the Clinical Global Impressions scale (CGI), which 
enables physicians to evaluate the severity of symptoms, 
changes over time, and response to treatment in psychiatric 
disorders. It plays a significant role in assessing treatment 
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effectiveness [4]. Assessing functional impairment is a crucial 
factor in determining therapy efficacy, and scales such as the 
Weiss Functional Impairment Rating scale [5] can be 
employed to evaluate functioning. While effective, these 
methods may suffer from subjectivity and bias. In contrast, 
objective measures can potentially improve the outcome 
sensitivity in clinical diagnosis and treatment efficacy 
monitoring of ADHD [6]. On the other hand, there is not a 
recognized and objective method for assessing ADHD that is 
utilized in clinics. 

This study aims to address the need for an objective ADHD 
assessment method in children by investigating the potential 
use of actigraphy-based acceleration measurements. The study 
focuses on monitoring changes in hyperactivity level and 
functional impairments in children with ADHD receiving 
medication. 

Unlike previous studies that primarily use actigraphy for 
ADHD diagnosis [7]–[9], this work takes a longitudinal 
approach to evaluate medication efficacy using actigraphy. 
Specifically, the study examines the correlation between 
actigraphy data and scales measuring ADHD symptom 
severity and functional impairments. 

There are four key differences between this study and 
previous research on actigraphy-based medication assessment. 
Firstly, it extends beyond sleep-related activities, as explored 
in previous studies [10]–[12], to encompass a full week of 
activities, as the scales used consider activities beyond sleep. 
Secondly, it collects seven consecutive days of data for each 
pre- and post-medication session (168 hours/session), 
providing a larger data volume compared to [13], and 
controlling for potential variations from routine activities. 
Thirdly, it explores a wide range of statistical features derived 
from actigraphy recordings, going beyond the commonly 
investigated variance [13] and intensity features [14]. Lastly, 
the study explores data-driven classification methods to 
predict the ADHD treatment response (i.e., improvement vs. 
worsening/stability) captured by the clinical scales. Notably, 
in this study, unlike other studies, in addition to the ADHD 
symptom severity completed by the parents, both the 
functional impairment assessed by the parents and the 
assessment of the general level of functioning by the clinician 
are included to increase the response to treatment indicators. 
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II. METHODS 

A. Participants, Clinical Assessment, and Data Collection 

The compliance of this study with ethical standards was 
evaluated and approved by the Istanbul University-Cerrahpaşa 
Clinical Research Ethics Committee (IRB# 514022). A total 
of ten subjects (S1-to-S10, 3 girls, 7 boys, age: 8.6±2.6) were 
recruited in the study. Patients who presented to the child 
psychiatry outpatient clinic with complaints of hyperactivity 
and impulsivity and who were subsequently diagnosed with 
ADHD according to the fifth edition of the diagnostic and 
statistical manual of mental disorders criteria (DSM-5) based 
on clinical evaluation constituted the study's sample size of 
ten. 

The data collection process is depicted in Figure 1. Pre-
medication scale score assessments are referred to as Scales-
𝑡0, while assessments at the end of the second week of 
medication (methylphenidate hydrochloride, osmotic-release 
oral system methylphenidate; no dosage increase through the 
study) are labeled as Scales-𝑡1. Child-adolescent psychiatrists 
used the CGI-Severity (CGI-S) score to evaluate the children's 
clinical functioning. Additionally, parents completed the 
Weiss functional impairment rating scale-parent report 
(WFIRS-P) to assess impaired functioning and the Turgay 
DSM-IV based child and adolescent behavior disorders 
screening and rating scale (Turgay DSM-IV-S) to assess the 
severity of hyperactivity and impulsivity. The actigraphy 
dataset comprises two recordings per subject, each spanning 7 
consecutive days of continuous 3-axes acceleration data 
collected from the dominant wrist. One recording, labeled 
Rec-𝑡0, is obtained prior to medication initiation, while the 

second recording, labeled Rec-𝑡1, is obtained during the 
second week of medication. Both recordings automatically 
commence at 7 am on the day following the clinic visit. 
Throughout the measurements, subjects were instructed to 
keep the watches on at all times. 

B. Actigraphy Hardware 

The study utilizes two different watches, namely 
GENEActiv (Activinsights, Huntingdon, UK) and AX3 
(Axivity Ltd., Newcastle upon Tyne, UK). Both watches can 
store raw 3-axes accelerometer data continuously for at least 
seven days, with a sampling rate of 20 Hz for GENEActiv and 
25 Hz for AX3. GENEActiv is used for measurements from 
subjects S1 and S2, while AX3 is used for data from subjects 
S3 to S10. The equivalence and agreement between the two 
watches in measuring acceleration is demonstrated in [15], 
with an intraclass correlation coefficient of 0.95 (95% 
confidence interval: 0.87-0.98). 

B. Data Analysis 

All data analyses are conducted using MATLAB 
(MathWorks, Natick, MA). The overview of the analyses is 
summarized in Figure 2. The dataset is initially examined to 
identify any missing data or outliers. This examination 
includes visually inspecting the data for missing values and 
checking if any data points exceed the predefined dynamic 
ranges of ±8g, which serve as outlier thresholds. As a result, it 
is determined that all recordings in the dataset are free of 
missing data or outliers. However, the WFIRS-P scores for one 
subject (S10) were missing and are therefore excluded from 
analyses involving WFIRS-P. 

Then, the accelerometer data captured in three-
dimensional Cartesian coordinates (𝑥, 𝑦, 𝑧) is converted into 
spherical coordinates (𝜌, 𝜃, 𝜙) to provide a more natural 
representation of wrist movements. The data from one of the 
subjects transformed to the new coordinates is presented in 
Figure 2. For each spherical coordinate, a set of 15 features is 
computed, including maximum, minimum, mean (μ), standard 
deviation, median (η), mode, range, skewness (β), kurtosis, 
coefficient of variation, variance, interquartile range between 
upper (Q3) and lower (Q1) quartiles, entropy, standard error, 
and median absolute deviation; totaling 45 features. 

 
Figure 1. The data collection procedure encompasses initial assessments 

of subjects using three scales, namely CGI, WFIRS-P, and Turgay 

(Scales-𝑡0), followed by a seven-day recording period (Rec-𝑡0). 

Subsequently, the subjects commence medication, and during the 

second week of medication intake, another seven-day recording period 

(Rec-𝑡1) is conducted. At the conclusion of Rec-𝑡1, subsequent 

assessments using the same scales (Scales-𝑡1) are administered. 

 
Figure 2. Data analysis steps. (a) The raw 3D acceleration data is converted into spherical coordinates. The 𝜌 direction captures the amplitude of the 

accelerations, while the 𝜙 and 𝜃 directions capture mostly the mediolateral (𝜙′) and anteroposterior (𝜃′) swings of the wrist. From the recorded data 

and their distributions, a total of 45 features are extracted. (b) Correlations are calculated between the changes in these features, Δ𝑓𝑖, from Rec-𝑡0 to 

Rec-𝑡1 and the corresponding changes in scale scores, Δ𝑆𝑐𝑜𝑟𝑒, from Scales-𝑡0 to Scales − 𝑡1. (c) Subsets of features exhibiting the highest correlations 

and new features obtained through principal component analysis (PCA) are utilized to predict the ADHD treatment response as detected by the scales. 



  

Correlations between the changes in actigraphy feature 
values from Rec-𝑡0 to Rec-𝑡1 and the Scale-𝑡0 to Scale-𝑡1 
changes in the CGI scale (ΔC), WFIRS-school subscale (ΔW1) 
assessing functional impairment in school-behavior domain, 
WFIRS-life subscale (ΔW2) assessing functional impairment 
in life-skills domain, and Turgay DSM-IV-S hyperactivity-
impulsivity subscale (ΔT) are analyzed (Figure 2(b)). Pearson 
correlation coefficients (𝑟) are computed for each feature-
score pair. The features are ranked based on 𝑟 for each scale. 
Subsequently, the feasibility of predicting the ADHD 
treatment response in patients, as clinically determined by ΔC, 
ΔW1, ΔW2, and ΔT, is explored using two new feature sets 
(Figure 2(c)). One set consists of the highest-ranked features, 
while the other set consists of principal components derived 
from the complete feature set, serving as predictors in the 
analysis. 

III. RESULTS AND DISCUSSION 

The scale score changes of ΔC, ΔW1, ΔW2, and ΔT are 
presented in Table I. Negative values indicate improvement, 
denoted by the binary value '1' in the corresponding columns 
Cb, W1b, W2b, and Tb. Positive values indicate a worsening, 
while zero represents stability, and both are indicated by the 
binary value '0'. All subjects show improvement based on ΔC  
scores. However, ΔW1, assessing school behavior changes, 
reflect worsening in five out of nine subjects. These score 
variations are expected because there may be assessment 
differences between the clinician and the parents. 

A.  Correlations Between Changes in Features and Scores 

Table II summarizes the correlation coefficient analysis, 
which is conducted on two versions of the data: one 
considering the entire 168-hour recordings and another 
focusing on workday hours between 8 am and 5 pm over five 
workdays, totaling 45 hours. The resulting correlation 
coefficients from the weekday hours are denoted as ΔC-wd, 
ΔT-wd, ΔW1-wd, and ΔW2-wd in the table. The individually 
obtained correlation scores (𝑟) between the features and the 
scale score changes range from -0.88 to 0.86. To rank the 
features across all four scales, a feature score (S) is calculated 
by taking the square root of the mean of the squared correlation 
coefficients of the feature. Table II presents the seven features 
that achieve S>0.5, identified as the best features, along with 
their individual 𝑟 values for each scale and S values. 
Remarkably, median (η) emerges as the statistical feature that 
consistently ranks among the best features in all three spherical 
coordinate directions. The highest S score is obtained for the 
η𝜌. The other prominent features are μ𝜙, 𝜙𝜌, β𝜙, and β𝜃. 

 A further ranking is conducted to determine which scale 
exhibits the highest correlation with respect to these features. 

The corresponding S values are presented in the bottom row of 
Table II. ΔW1 demonstrates the strongest correlation, followed 
by ΔW2 and ΔT. Notably, with respect to ΔT, ΔW1, and ΔW2, 
which are obtained based on subscales completed by parents, 
the correlations derived from the complete recordings exhibit 
higher scores in comparison to the 45-hour segments. Given 
the restricted evaluation timeframe of working parents, limited 
to non-working hours, this outcome aligns with expectations. 

B. ADHD Treatment Response Prediction 

The recordings are assessed to determine their 
predictability of ADHD treatment response with medication. 
The binary labels used in Table I to represent the scale score 
assessments are utilized as the two classes for prediction. It is 
important to note that the dataset comprises a limited number 
of subjects with 45 features, necessitating feature reduction to 
prevent overfitting. Two feature sets are employed for 
prediction purposes. The first set comprises the seven highest-
ranked features as indicated in Table II. The second feature set 
is generated by applying principal component analysis (PCA) 
to the complete set of 45 features, selecting the principal 
components that account for 95% of the variance. Each feature 
set is obtained using two versions of the recordings: one 
utilizing the complete recordings and the other considering the 
45-hour segments of work hours. This results in a total of four 
feature vectors per scale change prediction. It is worth noting 

TABLE I. SCALE SCORE CHANGES FOLLOWING MEDICATION 

 ΔC Cb ΔW1 W1b ΔW2 W2b ΔT Tb 

S1 -2 1 0 0 -0.2 1 -4 1 

S2 -2 1 0 0 0.4 0 0 0 

S3 -2 1 -0.99 1 -0.8 1 -9 1 

S4 -2 1 -1.33 1 -0.8 1 -15 1 

S5 -2 1 0 0 -0.1 1 -5 1 

S6 -3 1 0.17 0 -0.1 1 10 0 

S7 -3 1 -0.67 1 -0.9 1 -19 1 

S8 -3 1 -0.33 1 -0.5 1 -9 1 

S9 -2 1 0 0 0.2 0 -6 1 

S10 -2 1 N/A N/A N/A N/A -12 1 

 

TABLE III. ADHD TREATMENT RESPONSE PREDICTION 

Scale Length/Feature Classifier TP TN FP FN 
Accuracy 

(%) 

Tb 

All/Top 
RUSBoost 8 2 0 0 100 

SVM 8 1 1 0 90 

All/PCA 
RUSBoost 8 0 2 0 80 

LR 8 0 2 0 80 

Wd/Top 
LR 8 1 1 0 90 

SVM 8 1 1 0 90 

Wd/PCA 
LR 7 0 2 1 70 

SVM 7 0 2 1 70 

W1b 

All/Top 
SVM 2 5 0 2 77.8 

LR 3 4 1 1 55.6 

All/PCA 
RUSBoost 2 4 1 2 66.7 

SVM 1 4 1 3 55.6 

Wd/Top 
SVM 3 3 2 1 66.7 

RUSBoost 1 5 0 3 66.7 

Wd/PCA 
RUSBoost 3 3 2 1 66.7 

SVM 1 3 2 3 44.4 

W2b 

All/Top 
SVM 7 0 2 0 77.8 

RUSBoost 5 1 1 2 66.7 

All/PCA 
LR 7 1 1 0 88.9 

SVM 7 0 2 0 77.8 

Wd/Top 
SVM 7 1 1 0 88.9 

RUSBoost 5 2 0 2 77.8 

Wd/PCA 
LR 7 2 0 0 100 

SVM 7 1 1 0 88.9 

 

TABLE II. PEARSON CORRELATION COEFFICIENTS (𝑟) BETWEEN 

STATISTICAL FEATURES FROM Ρ, 𝜃, 𝜙 AND ΔC, ΔW1, ΔW2, AND ΔT 

 
ΔC- 
wd 

ΔC ΔT- 
wd 

ΔT ΔW1- 
wd 

ΔW1 ΔW2- 
wd 

ΔW2 S 

𝛈𝛒 -0.16 -0.02 -0.49 -0.78 -0.82 -0.83 -0.78 -0.75 0.65 

𝛍𝝓 0.57 0.12 0.20 0.62 0.48 0.86 0.61 0.80 0.59 

𝛍𝛒 -0.17 0.05 -0.57 -0.70 -0.65 -0.65 -0.76 -0.60 0.57 

𝛈𝝓 0.38 -0.02 0.17 0.60 0.57 0.85 0.54 0.77 0.56 

𝛈𝜽 0.69 0.63 -0.45 -0.68 -0.55 -0.65 -0.17 -0.31 0.55 

𝛃𝝓 -0.41 -0.10 -0.14 -0.63 -0.41 -0.88 -0.45 -0.78 0.54 

𝛃𝜽 -0.55 -0.45 0.33 0.61 0.60 0.77 0.23 0.46 0.52 

S 0.46 0.3 0.37 0.66 0.6 0.79 0.55 0.66  

η, μ, and β correspond to median, mean, and skewness, respectively. |𝑟| values 

greater than 0.65 are highlighted in red. S correspond to feature score. 



  

that the prediction is performed only for W1b, W2b, and Tb. 
The Cb is excluded due to the absence of the '0' class 
representing worsening or stability. The performance of three 
classifiers is compared using the MATLAB Classification 
Learner toolbox. In this feasibility study, three classifiers are 
employed. Logistic regression (LR) and support vector 
machine with a linear kernel (SVM) are known to be suitable 
for handling small datasets as in this study, while random 
under-sampling boost (RUSBoost) is particularly 
advantageous in the context of imbalanced class distributions 
such as in W2b and Tb. 

The results of ADHD treatment response prediction are 
presented in Table III, including the number of true positives 
(𝑇𝑃), true negatives (𝑇𝑁), false positives (𝐹𝑃), and false 
negatives (𝐹𝑁). The accuracy percentage, calculated as 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 ∗ (𝑇𝑃 + 𝑇𝑁)/(𝑁), is also provided, where 
𝑁 represents the number of subjects with 𝑁=10 for Tb and 
𝑁=9 for W1b and W2b. The results of the top two classifiers 
for each prediction task are reported. The SVM classifier 
achieves the highest average accuracy across all predictions 
(74.8%), followed by RUSBoost (71.2%), and LR (67.4%). 
However, one-way analysis of variance (ANOVA) indicates 
that there is no significant difference among the prediction 
performances of the three models (𝑝 = 0.52). While the 
average accuracy obtained using the top seven features 
(83.5%) is slightly higher than that of the PCA feature set 
(78.7%), the difference is not significant (𝑝 = 0.35). On the 
other hand, when considering only Tb and W1b predictions, 
the difference between the average accuracies obtained using 
the top seven features is larger than PCA (83.6% vs. 70.9%, 
𝑝 < 0.05). 

The classifiers demonstrated similar average accuracies for 
Tb (LR: 80%, SVM: 82%, RUSBoost: 77.5%) and W2b (LR: 
75%, SVM: 81.4%, RUSBoost: 72.3%), which were higher 
than those obtained for W1b (LR: 47.2%, SVM: 61.1%, 
RUSBoost: 63.9%). For LR and SVM classifiers, these 
differences were found to be statistically significant (𝑝 <
0.05). These results are counterintuitive considering the higher 
S score corresponding to the ΔW1 column in Table II. 
However, it is important to note that the correlation analysis in 
Table II used continuous-valued vectors for feature and score 
changes. Binary versions of score changes may not exhibit 
strong correlations with the same features. Future work will 
include a biserial correlation coefficient analysis to further 
investigate this. 

IV. CONCLUSION 

This study presents an analysis of the correlations between 
changes in acceleration measurements obtained from a wrist-
worn watch and three scales, one evaluated by a clinician and 
two by parents, to assess the medication response in children 
with ADHD. Notably, this study is the first to explore the 
feasibility of predicting the treatment response from 
acceleration measurements. The findings, based on an initial 
study of ten children, reveal that mean, median, and skewness 
features derived from 3D acceleration measurements on 
spherical coordinates exhibit stronger correlations compared 
to other features. Furthermore, the results obtained from three 
binary classifiers demonstrate that the acceleration data can 
capture the ADHD treatment response in patients as assessed 
by the TURGAY DSM-IV-S and the WFIRS-life skills 

subscale scores with accuracies ranging from 72.3% to 82%. 
Future studies could involve a larger subject pool and longer 
observation periods to enhance generalizability and investigate 
predicting the magnitude as well as the direction of ADHD 
treatment response. 
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