
Integrating Genetic Information for Early Alzheimer’s Diagnosis
through MRI Interpretation

Seungeun Lee∗, Jaeyoung Lee∗, Moonhyun Lee∗, Jintak Choi, Kyungtae Kang, and Younghoon Kim

Abstract— Early detection of Alzheimer’s disease (AD) is cru-
cial, yet predicting AD in the mild cognitive impairment stage
remains challenging. Integrating biological data from genomics
and neuroimaging can provide valuable insights into early
detection and treatment. Although recent deep learning studies
have shown promise in AD prediction tasks, they often lack the
interpretation of multimodal data interactions. Therefore, there
is a need for further research on deep learning methods that
can effectively integrate and interpret multimodal biological
data for AD diagnosis and prediction. This study proposes a
novel approach for identifying regions where interactions occur
in sMRI (structural MRI) and genetic information and for
detecting discriminative features in AD progression. Through
the use of an attention mechanism and contrastive loss, it effec-
tively models the inter-relationships between these modalities,
leading to a more accurate understanding of AD. Our proposed
method achieved remarkable performance, with an accuracy
of 92%. Additionally, through model interpretation, we were
able to identify genetic and brain feature associations in AD
progression. This integrating study provides an effective and
interpretable approach for AD diagnosis and prediction.

Clinical relevance— This study provides a interpretable
approach to AD prediction by integrating imaging and genetic
data. By capturing the interplay between imaging and genetic
data, the model provides valuable clinical interpretations and
enhances its predictive capabilities. This integration also enables
the identification of critical biomarkers and signatures for early
detection and intervention in AD.

I. INTRODUCTION

Alzheimer’s disease (AD) is a debilitating and progressive
neurological disorder that affects millions of people world-
wide. Early detection of AD is critical for effective manage-
ment and treatment, as the disease can lead to significant
cognitive impairment. Magnetic resonance imaging (MRI)
is a widely used diagnostic tool for AD, but its accuracy
can be limited in the early stages of the disease. Integrating
genetic information into MRI interpretation may enhance
the accuracy of AD diagnosis and provide understanding
of pathology, but this approach has not yet been fully
explored. In this paper, we propose a novel method for
integrating genetic information into MRI analysis to improve
AD diagnosis accuracy.

Neuroimaging and genomics are important tools for the
early detection and treatment of AD. Single-nucleotide poly-
morphisms (SNPs) associated with AD pathology have been
identified [1], [2], and structural MRI (sMRI) identifies
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regions of the brain associated with AD pathology, such
as brain atrophy and white matter lesions [3]. Due to the
complexity of AD, however, the connection between genetic
factors and the brain is not well understood, and an integrated
approach can provide a more biological understanding of
the pathology [4]. But earlier analysis was based on manual
feature extraction, which relies on prior knowledge, and may
not capture non-linear associations.

Recently, deep learning (DL) methods have been success-
fully applied to AD classification using sMRI or genetic
data [5]. DL algorithms can provide effective integration
strategies, enabling accurate clinical prediction and repre-
sentation of biological data [6]. However, while multimodal
studies in AD show promising performance [7]–[10] , they
have not demonstrated the exploration of data interactions,
which is crucial for fully benefiting from multimodal learn-
ing. Furthermore, most DL methods using sMRI still rely
on predefined regions. Consequently, there is a need for
sophisticated methods that can automatically capture features
related to AD between different modalities and within each
modality, providing investigative data interaction and more
accurate AD prediction.

To address these issues, we propose a deep learning model
that (i) achieves high accuracy, (ii) automatically learns the
gene influential regions of the brain related to AD (no need
for extracting hand-crafted features), and (iii) incorporates
them for interpretability. To achieve these objectives, we pro-
pose a masked convolution layer that automatically extracts
only the regions of interest and an attention mechanism to
combine local-specific information from two modalities in
an interpretable manner. Using our model, we can provide a
clear interpretation of the relationship between local regions
of MRI and genes. Additionally, we employ a contrastive
learning framework to ensure consistency of information
between the genetic global feature and MRI global feature
of the same individual.

Our study represents a pioneering effort in identifying the
regions influenced by genes and brain images through the
application of a DL approach. The key contributions of our
work can be summarized as follows:

• Providing insights into the genetic underpinnings of the
AD progression, by identification of gene-influencing
regions of the brain.

• Providing efficient interpretable architectures using at-
tention mechanism to relate local MRI regions to genetic
information, and utilizing gene transformer encoder,
identify SNPs that may be associated with AD.



• Exploiting masked convolutions, which is able to effi-
ciently focus on AD relevant regions of the MRI data.

• Adopting a contrastive framework, which captures
individual-specific characteristics, to provide under-
standing of the different features in patients.

II. RELATED WORK

Our study of related work focuses on exploring deep
learning techniques that leverage both genetic data and med-
ical images to improve AD classification. We pay particular
attention to methods designed for multi-modal data analysis.

Genetic-medical image integrated study: The importance
of integrating genome with the medical image has been
attributed by some existing researches. Kirchler et al. [11]
identify subsets of genes whose levels of expression in a
tissue sample correlate with morphological characteristics,
by transfer learning. Taleb et al. [12] aligns fundus images
and genetic modalities in the feature space using contrastive
learning. Ash et al. [13] associate features of tissue images
with genomic markers based on autoencoders and correlation
analysis.

DL models using multi-modality in AD: There are some
works that show that multi-modal data can be critical to
developing a the high-performing DL. Ying et al. [7] improve
decision accuracy in an AD classification by incorporating.
Venugopalan et al. [8] propose data integration by concate-
nating intermediate features. Prabhu et al. [9] integrate MRI
and electronic health record in AD progression prediction
using decision level integration. Golovanevsky et al. [10]
connected to genetic, MRI, and clinical data using cross-
modal attention. However, unlike our method, these methods
did not connect local interactions within modalities.

III. DEEP LEARNING MODEL FOR INTEGRATING GENETIC
INFORMATION AND MRI

This study aims to develop a model that combines brain
and gene data to accurately predict the AD during the mild
cognitive impairment (MCI) stage. The model also focuses
on learning the interactions between the two types of data
in an understandable way. The overall model structure is
illustrated in Figure 1, consisting of three main blocks: the
data block, the attention-based feature fusion block, and
the contrastive individual feature learning block. In the data
block, local features are extracted from MRI and genetic
data. The attention-based feature fusion block is responsible
for learning the relationship between the extracted features
from both modalities. Finally, the contrastive individual
feature learning block ensures consistency between the two
modalities by using contrastive loss. This step helps the
model align and match corresponding features from brain and
gene data, further enhancing the accuracy of AD progression
prediction. In this section, we first describe the organization
of our data and introduce the notations we use (Section III-
A). Next, we explain our approach to extracting local features
from each data source (Section III-B), followed by our

method for fusing the data to make predictions (Section III-
C). Additionally, we describe our global contrastive learning
method that enhances patient consistency (Section III-D).

A. Data and notation

Before proceeding further, we describe the input data and
our notation. It included AD, MCI, and normal patients;
progressive MCI (pMCI) and stable MCI (sMCI) were differ-
entiated based on whether patients in the MCI stage had been
converted to AD for three years. In our model, we sample
10 MRI slices continuously from the center of the sagittal
plane. We denote xm = {m1,m2, ...,m10} be a sequence of
slices, where mk represent k-th MRI slice(1 ≤ k ≤ 10).

The gene dataset consists of 620,000 SNP for each person.
SNP is genetic variation that occurs ”minor” in a single
nucleotide. We selected the top 128 SNPs that have the
greatest impact on AD disease using linear regression. In our
implementations, each SNP is encoded as one of four inte-
gers, 3, 2, 1, 0, which represent four cases of ”major+major”,
”major+minor”, ”minor+minor” and ”missing” respectively.
Hereafter, we refer encoded SNP as just ”a gene” for
convenience. Let xg = {g1,g2, ...,g128} be a sequence of 128
genes for a person, where gn is n-th gene (1 ≤ n ≤ 128).

B. Data block

Our key idea in designing the network is that there must be
a close correlation between each gene and local regions of a
brain in causing AD disease. Before learning the correlation,
our model extracts local information from each modality.
To capture this, we designed a data block with two local
feature encoders, Em for MRI and Eg for genes, which encode
information from each modality.

Em takes 10 MRI slices as inputs to extract local features.
Since an MRI image contains lots of noisy regions (back-
ground or tissues), we propose the use of the masked residual
layer to ensure that Em concentrates on the only relevant
regions of the brain. Let f l

m denote the MRI feature after
l-th layer of Em. A masked residual layer computes output
feature as follows:

f l+1
m = ( f l

m + residual( f l
m))⊙ml , (1)

where ⊙ is a element-wise multiplication, and residual is
a residual network made up of two convolutional layers
with batch normalization and LeakyReLU activation. ml is
a mask in l-th layer, which is computed by another small
convolutional network. This mask has same spatial shape as
f l
m, and is computed by using mask network which takes

f l
m as an input. The mask network has same architecture as

residual network, except for exploiting sigmoid function as
last activation. We exploit five masked residual layers in Em.

Eg takes the sequence of 128 genes to compute features
for each genes. Eg consists of an gene embedding layer
followed by five transformer encoder layers [14]. We exclude
positional encoding in order not to be constrained by the
order of genes In addition, in order to ensure that each genes
contains sufficient information about classes, we implement
an auxiliary classifier Cg at the end of the gene encoder,



Fig. 1: Model overview: The three parts of the proposed model.

which learns with the binary cross entropy for the prediction
result using each feature.

L g
clf =−

128

∑
n=1

∑
{y(i),gn}

(
y(i) logCg(gn)+(1− y(i)) log(1−Cg(gn))

)
(2)

where y(i) is whether i-th person is on stage of sMCI or
pMCI.

C. Attention based feature fusion block

The attention-based feature fusion block is designed to
capture the local relationships between the MRI features
and each gene. By adopting the attention mechanism, the
model can focus on the most relevant parts of the input data
to improve accuracy. In this study, we adopt the attention
mechanism to learn the relationship between the two modal
features. Let G be the matrix where each row represents gn,
and M be the matrix where each row represents mk. Then,
the output of attention attn is computed as follows:

attn = softmax
(
GMT )M (3)

In order for this relationship to capture sufficient information
about MCI, we add another MCI classifier trained with the
following loss term:

L attn
clf =− ∑

{y,attn}
(y logCattn(attn)+(1− y) log(1−Cattn(attn)))

(4)

D. Contrastive individual feature learning block

While attention mechanisms enable the learning of rela-
tionships between the local features, ensuring that the genetic
global feature is consistent with the MRI global feature of
the same person is essential. In other words, we aim to guide
our network to learn global consistency between MRI and ge-
netic information when they originate from the same person.
To accomplish this, we compute global feature vectors for
each modality and maximize their mutual information. Let v,
w be the global MRI feature and global genetic feature of a
person, respectively. We maximize the mutual information by
exploiting the InfoNCE loss, which approximates the upper
bound of negative mutual information [15].

Lcst =− ∑
{v,w}

log
exp(sim(w,v))

∑v′ ̸=v exp(sim(w,v′))
(5)

where sim(·, ·) is a cosine similarity function. The global
features v and w are computed by encoding the MRI and
genetic local features, respectively.

E. Overall loss function

The overall loss function for training our network as
follows:

Loverall = λ
attn
clf L attn

clf +λ
g
clfL

g
clf +λcstLcst (6)

where λ attn
clf ,λ

g
clf and λcst are hyperparameters for adjusting

the effect of each loss term. In our experiment, we set them
to 1.0,1.0 and 0.5 respectively.

IV. EXPERIMENTS

A. Datasets description

We use the ADNI stage 1 dataset (adni.loni.usc.edu),
which contains T1w MRI images and a GWAS total of 836
people (208 sMCI, 237 pMCI, 179 AD, and 212 normal).
For MRI, bias correction, linear registration using the ICMB
MNI 152, and skull stripping were performed. For the GWAS
data, quality preprocessing was performed using the Plink
tool [16].

B. Performance Evaluation

Dataset was split into training (70%), validation (15%),
and test (15%) subsets. PyTorch 1.13 was used for training
on an NVIDIA GeForce RTX 3090 GPU. Adam optimizer
was employed with a learning rate of 1e-4. Training consisted
of a maximum of 10,000 steps with a batch size of 8.

Table I presents the results of our proposed method,
comparing the attention-based method (Atten) and the concat
method (h = [w;v]). The performance was further enhanced
by incorporating contrastive learning. Additionally, we eval-
uated the Gene Transformer Encoder (Gene TrE) and MRI
Mask Encoder (MRI maskE) by removing the mask and
using a linear encoder, demonstrating their contribution to
improved performance in contrastive learning and attention
fusion. Table II demonstrates the superior performance of
our model compared to existing studies that utilized sMRI
and SNP data for the given task.



Fig. 2: Discriminative region and attention region associated with AD.

TABLE I: Evaluation proposed method for pMCI vs sMCI.

Method Acc Sen Spc
Proposed
Contrastive + Attn(Gene +TrE, MRI +mask) 0.92 0.89 0.95

Concat(Gene +TrE ; MRI +mask) 0.87 0.84 0.88
Attn(Gene +TrE, MRI +mask) 0.90 0.88 0.93
Contrastive + Attn(Gene, MRI +mask) 0.87 0.79 0.94
Contrastive + Attn(Gene +TrE, MRI) 0.90 0.87 0.95
Contrastive + Attn(Gene, MRI) 0.86 0.82 0.91

TABLE II: Evaluation compared other studies.

TASK Study Data Method AUC
pMCI
vs
sMCI

[17] SNP(20 SNPs)
sMRI(Extracted feature) FNN 0.83

[18] SNP(40 SNPs.)
sMRI(Extracted feature) RF 0.82

Our SNP(128 SNPs)
sMRI

Attention +
Contrastive 0.91

AD
vs
MCI
vs
CN

[19] SNP (486 SNPs)
sMRI(ROI region) CNN 0.80

Our SNP(128 SNPs)
sMRI

Attention +
Contrastive 0.95

AD
vs
CN

[7] SNP (15 SNPs)
sMRI CNN+ MLP 0.93

Our SNP(128 SNPs)
sMRI

Attention +
Contrastive 0.96

C. Interpretation

1) Identifying the discriminative regions for AD progres-
sion: In order to identify regions that are most indicative of
AD progression, we generate saliency maps (Fig. 2 ”Saliency
map”) highlighting the input image regions that are most
important for the model’s prediction through gradient track-
ing. The highlighted region is associated with the prodromal
AD region, such as the hippocampus, parietal lobe, and
corpus callosum [20], demonstrating model’s ability focus
on disease associated region.

2) Finding highly correlated brain regions with genes.:
Our attention fusion approach enables us to selectively focus
on informative and relevant features, leading to accurate

(a) Genetic self-attention map. (b) Feature map without APOE.

Fig. 3: Genetic influence in AD progression.

TABLE III: A influential SNP confirmed gene self attention.

Idx. SNP Related Gene Function
114 rs8067676 Unknown Unknown

65 rs2123060 DLGAP2 Neuronal signaling
synapse organization

120 rs12961741 Unknown Unknown

127 APOE4 [23] APOE4 Neuronal signaling
neuroinflammation

9 rs2345493 [24] KCNS3 potassium channel control.

predictions in AD progression. By examining the attention
map visualization, as shown in Figure 2, we gain valuable
insights into the specific regions of the brain that exhibit
concentrated attention. To further identify these regions, we
visualize the gradients of the attention map with respect
to the input image in the ”Attention region” of Figure
2. Remarkably, these identified regions align with AD-
associated genes such as fusiform, calcarine, and cerebellum
[21], [22]. This finding suggests that our attention-based
approach effectively captures the parts of the brain that are
genuinely affected in AD.

3) Exploring the associated SNP.: While APOE4 has been
extensively investigated in the context of AD, we confirm
that other genes are also significantly influential by viewing
the attention map in the gene encoder, as displayed in Figure
3a. The pattern is observed in most patients, and we identify
relatively highlighted genes as in Table III. some of which
are known to be associated with AD and some are not.



(a) pMCI (b) sMCI

Fig. 4: Discriminative global features of progression AD.

Fig. 5: Impact of components on capturing relevance regions.

Furthermore, to investigate the influence of a significant
gene, we trained our model without the APOE4 gene, since
that is an established genetic risk. As shown in Figure 3b,
this model’s MRI encoder feature map highlights irrelevant
regions containing noise, demonstrating that gene informa-
tion contributes to the capture of discriminative features.

4) Investigating contribution brain region of the global
feature.: Global consistency enables the capture of the
individual-specific features of both MRI and genetic data.
Figure 4 shows the attribute MRI regions of global features
in pMCI and sMCI, via gradient calculation. In pMCI, the
gradient region is concentrated in the parietal lobe, which
is associated with AD pathology and the attention fusion
region. whereas in sMCI, the gradient is evenly distributed,
confirming the absence of a particular contribution region.
These demonstrate that global consistency effectively repre-
sents individual-specific characteristics and establish a link
between genetic features and brain in AD progression.

D. Ablation study
We assessed the impact of the MRI mask and gene

transformer encoder. To assess the ability to detect disease-
related regions, we analyzed the MRI feature map. Figure 5
highlights the importance of accurately capturing discrimi-
native regions, where MRI feature maps primarily focus on
noisy regions instead of disease-related regions. Not only do
these components enhance model performance, but they also
significantly induce model to focus on associated region.

V. CONCLUSION

In this paper, we present an interpretable multimodal
method that not only achieves high performance but also
offers interpretability through the integration of multimodal
data. The model’s outputs reveal that the attention fusion
actually learns by focusing on specific brain regions known
to be associated with genetic information. Furthermore,
differences in global consistency between classes confirm
the regions that are relevant to AD progression. Gene trans-
former encoders provide influential SNP features as well.
The results of this study enhance our comprehension of the
genetic influence on the brain in the progression of AD, and
provide insights into the pertinent genetic and brain features.
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