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Abstract—Bayesian methods can express uncertainty about
their predictions, but have seen little adaptation in survival
analysis using neural networks. Proper uncertainty estimation
is important in high-risk domains, such as the healthcare or
medical field, if machine learning methods are to be adopted
for decision-making purposes, however, uncertainty estimation
is a known shortcoming of neural networks. In this paper, we
introduce the use of Bayesian inference techniques for survival
analysis in neural networks that rely on the Cox proportional
hazard assumption, for which we discuss a new flexible and
effective architecture. We implement three architectures: a
fully-deterministic neural network that acts as a baseline, a
Bayesian model using variational inference, and one using Monte-
Carlo Dropout. Our comprehensive experiments show that on
the WHAS500 dataset, Bayesian techniques improve predictive
performance over the state-of-the-art neural networks and on
the larger SEER and SUPPORT datasets provide comparable
performance. In all experiments, training with Monte Carlo
Dropout is significantly faster than training with variational in-
ference. Our Bayesian models additionally provide quantification
of both aleatoric and epistemic uncertainty, which we exhibit by
plotting 95% confidence intervals around the survival function
and showing a probability density function of the survival time.
Our work motivates further work in leveraging uncertainty for
survival analysis using neural networks.

Index Terms—uncertainty estimation, neural networks, sur-
vival analysis, variational inference, MC Dropout

I. INTRODUCTION

The Cox’s proportional hazards model [1] has long been
the standard approach for survival analysis in many healthcare
applications, but recent advances in machine learning research
have made neural networks (NNs) a powerful tool for survival
regression [2]–[4]. Such networks have proven to provide
solid performance in terms of ranking and prediction accuracy
in survival analysis applications, but traditional maximum-
likelihood-based methods notoriously perform poorly when
data is sparse [5] and proper uncertainty estimation is a
known shortcoming of NNs. In healthcare and biomedical
applications, confidence in the prognostic outcome of, e.g., a
cancer diagnosis, is essential for medical doctors to make the
decision on individual treatment. Bayesian models can express
uncertainty about their predictions, specifically aleatoric and
epistemic. The former refers to the inherent noise in the data,
and the latter to the lack of knowledge of the model [6].
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Bayesian Neural Networks (BNNs) are stochastic NNs
trained using Bayesian inference, e.g., variational inference
(VI) [7] and Monte-Carlo Dropout (MCD) [5]. A BNN was
adopted for survival analysis by [8], but their work used
pseudo survival probabilities instead of censored ones.

In this work, we propose BNNs as a tool for uncertainty
estimation in survival analysis models. To the authors’ best
knowledge, no prior work has explored the use of BNNs for
Cox survival analysis. We consider both VI and MCD as
estimation approaches, and, to the end of comparing Bayesian
and non-Bayesian approaches, we introduce a feasible network
architecture and furthermore adopt five existing reference
models. We observe agreement and juxtaposition between
deterministic point estimates and the Bayesian ones, indicating
the overall validity of our setup. In-depth analyses unveil an
advantage of adopting a Bayesian framework, especially in
small-sized datasets. The intrinsic probabilistic dimension of
BNNs naturally allows for recovering uncertainty estimates,
estimating predictive errors and plotting confidence bands.
This provides a much more comprehensive description and un-
derstanding of the data and model under consideration. Source
code is available at: https://github.com/thecml/UE-BNNSurv

Fig. 1: Illustration of the BNN architecture with a single
hidden layer, where weights and biases are treated as random
variables. The output nodes provide the mean and standard
deviation of a risk score, r̂i, as Gaussian samples, i.e., r̂i ∼
N (µxi

, σxi
) for a d-dimensional sample xi.



II. FUNDAMENTALS

A. Elements of survival data analysis and notation

Modelling the probability that an event occurs at time T
later than t, i.e., the survival probability S(t) = Pr(T > t) =
1 − Pr(t ≤ T ), is a major task in survival analysis. A
main ingredient is the so-called hazard function h(t) =
lim∆t→0 Pr(t < T ≤ t+∆t|T > t)/∆t. This corresponds to
the death rate at an instant after time t, giving survival
past that time [9]. The hazard function is related to the
survival function through h(t) = f(t)/S(t), where f(t)
is the probability density associated with T , f(t) :=
lim∆t→0 Pr(t < T ≤ t+∆t)/∆t, i.e., the instantaneous rate
of death at time t. In this view, h(t) is the density of T
conditional on T > t, and the functions S(t), h(t), f(t), all
correspond to equivalent ways of describing the distribution of
T , formalizing, e.g., the intuition that higher values for h(t)
correspond to higher death probabilities.

B. Cox Proportional Hazard Model

For the task of fitting a regression model to survival times,
let D = {(yi, δi,xi, )}Ni=1 be the data, where i denotes the
i-th individual. With Ti being the event time and Ci the
censoring time, yi = min(Ti, Ci), and δi = 1 if Ti ≤ Ci

(zero otherwise). We denote xi as a vector of d covariates.
Cox’s Proportional Hazards (CoxPH) model [1] assumes a

conditional individual hazard function of the form h(t|xi) =
h0(t) exp(f(θ,xi)). The risk score is denoted as f(θ,xi).
In [1] f is set to a linear function of the covariates, i.e.,
f(θ,xi) = xiθ, and the maximum likelihood estimator
θ̂ is derived by numerically maximizing the (partial) log-
likelihood:

log p(D|θ) =
∑

i:δi=1

log
h(yi|xi)∑

j:Tj≥Ti
h(yi|xj)

,

=
∑

i:δi=1

f(θ,xi)−
∑

j:Tj≥Ti

f(θ,xj). (1)

Different estimators have been derived for the baseline haz-
ard function, e.g., [10], enabling the estimation of the sur-
vival function as Ŝ(t) = Ŝ0(t)

exp(xiθ̂), with Ŝ0(t) =
exp(−

∫ t

0
ĥ0(t)dt). A purely non-parametric approach, not

using covariates’ information, is provided by the Kaplan-Meier
estimator, used as a reference in Fig. 2. For more details, see,
e.g., [9].

C. Variational inference

We denote the data as D, the likelihood as p(D|θ) and prior
distribution on the parameter of interest θ as p(θ). The target
of Bayesian inference is the posterior distribution p(θ|D) =
p(θ)p(D|θ)/p(θ). The distribution of unobserved (new) data
conditioned on D, known as predictive distribution, is obtained
from the posterior through marginalization over the parameter
space Θ, i.e., p(xnew|D) =

∫
Θ
p(xnew|D,θ)p(θ|D)dθ.

The direct computation of the posterior is challenging as,
in general, the term p(D) is intractable. Sampling methods do
not scale well in high dimensions and are time-consuming:

VI approximates the true and unknown posterior distribution
with a distribution qζ(θ) chosen within a class of tractable
parametric distributions Q. Hereafter Q is the class of multi-
variate Gaussians with mean µ and covariance matrix Σ, and
ζ ≡ {µ,Σ}. VI seeks for the best approximation in Q to
p(θ|D) by minimizing the Kullback-Leibler (KL) divergence
from qζ(θ) to p(θ|D), i.e., by recovering the variational
parameter ζ⋆ via minimizing:

KL(qζ(θ)||p(θ|D)) := Eθ∼qζ

[
log p(θ) log p(θ|D)

log qζ(θ)

]
, (2)

commonly attained via the Bayes-by-backprop method [11]. A
NN estimated with Bayesian inference is commonly referred
to as Bayesian Neural Network (BNN), and our approach
provides a BNN-based extension of the non-Bayesian and
fully-linear standard Cox model.

D. Monte-Carlo Dropout

Optimizing Eq. (2) requires sampling, estimating stochastic
gradients, and involves several caveats and difficulties [6].
Though Monte-Carlo Dropout (MCD) has been historically
developed as a computationally efficient method for regular-
ization, it has been shown to have a connection with Bayesian
inference. Indeed, NNs with dropout applied at every layer are
equivalent to approximate VI in deep Gaussian Processes [12].
Dropout optimizes the KL objective between an approximate
distribution and the posterior of a deep Gaussian Process as a
mixture of Gaussians [13]. Such a setup is limited compared to
VI, yet its simplicity makes it attractive and a widely adopted
baseline for comparison with alternative Bayesian approaches.
So far, within NN applications in survival analysis, MCD has
not been adopted for uncertainty quantification.

III. EXPERIMENTS AND RESULTS

A. Network architecture

For the purpose of comparability in the results, consistency
in the hyperparameters, and evaluation fairness, we propose a
multi-layer perceptron (MLP) backbone network architecture.
A MLP is fully-connected feedforward NN; the number of
hidden layers and neurons is a hyperparameter tuned based
on the data, see, e.g., [6]. Using an MLP is aligned with the
literature, as capable of providing solid predictive performance
[2]–[4].

The proposed architecture is depicted in Fig. 1. There
are three configurations: (i) baseline: a fully-deterministic
NN obtained by removing the σx neuron and optimizing
the objective Eq. (1). (ii) Bayesian model trained with VI,
learning the variational approximation by optimizing Eq. (2).
(iii) Bayesian model trained with MCD (25% dropout rate).

In relation to Sec. II-C, Eq. (2) adopts the Cox likelihood (1)
where f(θ,xi) corresponds to the MLP neural network and θ
to its parameter (collection of weight and biases), the objective
of the Bayesian inference. Whereas the epistemic uncertainty
in the model is captured by the Bayesian framework, to capture
the aleatoric uncertainty, the network’s outputs are sampled
from a Gaussian [14], Fig. 1.



B. Datasets and models

For our empirical analyses, we use the openly-available
WHAS500 [15], SEER [16] and SUPPORT [17] datasets;
they differ in the number of samples and the percentage of
censored data (see Tab. I). After imputing missing values by
sample mean for real-valued covariates or mode for categorical
covariates, applying a z-score data normalization and one-hot
encoding categorical covariates, we adopt a 70%-30% train-
test split for training and testing.

We implement the Cox model [1], two related traditional
survival models CoxNet [18], RSF [19], and three models
based on a NN architecture, DSM [3], DeepSurv [2], and the
MLP discussed in Sec. III-A. For all datasets and models,
we use Bayesian optimization [20] to tune the respective
models’ hyperparameters over ten iterations using 5-fold cross-
validation. This includes number of iterations, batch size and
network architecture if applicable, and is done solely on
the 70% training split. We use the hyperparameters leading
to the highest average concordance-index (Harrell’s) on the
validation folds.

C. Results

Table I reports the predictive performance of our baseline
MLP and its VI and MCD variants, and literature benchmarks.
We adopt four evaluation metrics: Harrell’s concordance-index
(CIH) [21], Uno’s concordance-index (CIU) [22], the integrated
Brier score (IBS) [23] and the negative log-likelihood (NLL).
For VI and MCD, such measures are constructed based on
predictive means over 100 posterior draws. Model were trained
until convergence (no improvement was seen in test CIH).

Concerning the baseline MLP models and their VI and
MCD variants, on the smallest WHAS500 dataset we observe
that modelling both aleatoric and epistemic uncertainty by
adopting Bayesian methods improves the ranking and accuracy
performance in terms of CIH, CIU and NLL. In the mid-
sized SEER dataset, the effect of the different estimation
approaches for the MLP reduces, and all the measures are
generally aligned with each other, whereas for the SUPPORT
dataset, maximum likelihood can take full advantage of the
considerable size of the data and outperforms, consistently
although slightly, Bayesian methods.

With respect to the existing models, our work outperforms
NN-based solutions on the small dataset (high CIH, CIU and
low IBS) and we see an advantage in combining the MLP
architecture with Bayesian inference for ranking and accuracy
in predicting the survival function. In the mid-sized dataset,
the performance of all the models is similar, whereas in the
large dataset, it seems that methods based on NNs clearly
outperform the traditional CoxPH, CoxNet and RSF in terms
of CIH, CIU and NLL, though behave similarly in terms of
IBS.

Regardless, the use of Bayesian methods does not deteri-
orate performance metrics in any of our experiments. This
demonstrates that aleatoric and epistemic uncertainty can be
included in survival analysis using NNs at no additional cost,
besides the increase in training time for VI. The leftmost

TABLE I: Performance metrics on the test sets. N : total
sample size, C: pct. of censored data, d: number of covariates.

(a) WHAS500 (N = 500, C = 57%, d = 14).

Model Ttrain CIH ↑ CIU ↑ IBS ↓ NLL ↓

CoxPH [1] 0.05s 0.806 0.785 0.152 0.849
CoxNet [18] 0.04s 0.807 0.785 0.149 0.832
RSF [19] 0.07s 0.785 0.754 0.167
DSM [3] 2.78s 0.785 0.776 0.195
DeepSurv [2] 0.24s 0.774 0.758 0.185

This work:
Baseline (MLP) 10.67s 0.774 0.761 0.154 0.890
+ VI 2m 53s 0.801 0.776 0.142 0.855
+ MCD 6.47s 0.798 0.772 0.160 0.884

(b) SEER (N = 4024, C = 85%, d = 28).

Model Ttrain CIH ↑ CIU ↑ IBS ↓ NLL ↓

CoxPH [1] 0.23s 0.739 0.726 0.105 0.582
CoxNet [18] 0.23s 0.740 0.727 0.105 0.582
RSF [19] 2.05s 0.724 0.714 0.113
DSM [3] 2.09s 0.738 0.737 0.115
DeepSurv [2] 0.55s 0.746 0.746 0.113

This work:
Baseline (MLP) 24.92s 0.743 0.745 0.107 0.587
+ VI 6m 15s 0.741 0.733 0.109 0.589
+ MCD 26.81s 0.741 0.726 0.110 0.588

(c) SUPPORT (N = 8873, C = 32%, d = 14).

Model Ttrain CIH ↑ CIU ↑ IBS ↓ NLL ↓

CoxPH [1] 0.36s 0.583 0.586 0.222 2.862
CoxNet [18] 0.10s 0.581 0.585 0.224 2.865
RSF [19] 8.81s 0.569 0.571 0.232
DSM [3] 4.61s 0.603 0.606 0.222
DeepSurv [2] 0.70s 0.618 0.617 0.221

This work:
Baseline (MLP) 58.72s 0.615 0.617 0.210 2.836
+ VI 40m 28s 0.606 0.607 0.310 2.840
+ MCD 60.87s 0.604 0.606 0.216 2.845

panel in Fig. 2 shows that our methods provide consistent
survival function estimates that align with the Kaplan-Meier
estimator. VI and MCD additionally capture the aleatoric
and epistemic uncertainty in the confidence intervals, which
provides a clear predictive advantage and facilitates better
adaptation for decision support. In the central panel, observe
that grade 1 and 2 tumors have a statistically different impact
on survival times approximately after 25 years, a detail that
non-probabilistic methods could not capture. This is an ideal
application for modelling the underlying uncertainty in, e.g.,
different treatments. In the rightmost panel, by following [24],
we plot the survival time of a randomly selected individual
from the test set: the distribution of the exponential random
samples with a rate parameter randomly sampled from the
MCD predictive distribution is quantitatively different than
the one obtained based on the predictive mean, which shows
lighter tails, and thus a higher likelihood of early-experiencing
the event compared to the non-Bayesian MLP estimation.
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Fig. 2: Model inference on the SEER dataset. Left & center: survival function for different estimation approaches and for
various grades of the tumor severity in breast cancer cases (Solid lines: VI; Opaque lines: MCD; Dashed lines: 95% conf.
int.). Right: probability density function of the survival time, see Sec. III-C for details.

IV. CONCLUSION

We adopt variational inference and Monte-Carlo Dropout
to provide Bayesian estimation of survival probability and
risk in Cox models using neural networks. By proposing a
suitable and effective neural network architecture, we perform
extensive experiments over six models and three datasets.
These show that Bayesian techniques can in situations where
data is sparse increase predictive performance of survival
models compared to other neural network approaches. We
encourage further work within our framework, which we have
shown to be effective in providing an immediate quantification
of combined aleatoric and epistemic uncertainty. Such infor-
mation can support risk-aware decision-making in high risk
domains, such as the healthcare or medical domain.
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