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Abstract—Advancements in wearable technology and machine
learning have the potential to enhance rehabilitation therapy
planning, particularly in outpatient settings by capturing context-
specific information about an individual’s hand use, including
interactions and activities of daily living (ADLs). In this study,
we evaluated the performance of two object detection models,
Detic and UniDet, on egocentric videos recorded by individuals
with spinal cord injury (SCI). Our evaluations revealed that
UniDet, when evaluated on its original 700 classes, achieved a
Mean Average Precision (mAP) of 0.038 for all objects and 0.099
for active objects. When evaluated on a set of 27 consolidated
functional categories, UniDet’s performance improved to an
mAP of 0.16 for all objects and 0.19 for active objects. Detic
demonstrated superior performance with an mAP of 0.19 for
all objects and 0.30 for active objects when evaluated on the
27 functional categories. However, the ground truth labelling
strategy resulted in a large number of false positives, suggesting
that the model performance is likely higher. Despite challenges
posed by low-light conditions and motion blur, this study provides
crucial insights into the potential of object detection models
in therapy planning, facilitating the integration of wearable
technology and machine learning in outpatient rehabilitation and
enabling more personalized and effective therapeutic strategies.

Clinical relevance— The ability to encode context from egocen-
tric videos of patients’ daily activities presents a transformative
opportunity in outpatient neurorehabilitation, enabling clinicians
to develop more personalized and effective rehabilitation strate-
gies grounded in real-world hand usage patterns.

Index Terms—egocentric video, object detection, spinal cord
injury, neurorehabilitation, wearable technology

I. INTRODUCTION

Stroke and spinal cord injuries (SCI) present significant
challenges to the ability of affected individuals to live in-
dependently and perform activities of daily living (ADLs).
These conditions can severely impair motor function, requiring
tailored rehabilitation approaches to regain independence as
much as possible [1]. In this context, occupational and physical
therapists often assess ADLs and in-clinic capacity [2] (i.e.,
what an individual can do in a standardized environment) to
guide outpatient rehabilitation and therapy planning.

This approach assumes that any improvements in in-clinic
capacity will translate to improvements in performance [2]
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(i.e., what an individual actually does in their daily environ-
ment). Recent studies, however, indicate that improvements in
capacity do not always correspond to changes in performance,
suggesting that more comprehensive methods for assessing
real-world performance are needed [3].

Traditional methods of gathering context-specific informa-
tion about ADLs, such as direct observation or self-reporting,
have several drawbacks, including self-report bias and the
inability to mimic individual home environments [4]. Wearable
technologies, however, can mitigate these issues by opening
new paths for data collection [5]. Specifically, egocentric
videos offer a first-person view of ADLs, capturing extensive
human-centric data in naturalistic settings. This provides rich
insights into the activities, interactions, and strategies of in-
dividuals with disabilities, surpassing other wearable sensors
like accelerometers and magnetic sensors in context [6]–[9].

Leveraging this technology, we previously developed a
dashboard that reports hand performance measures for out-
patient rehabilitation using head-mounted egocentric cameras
[10], [11]. Clinicians acknowledged its potential to monitor
rehabilitation progress, deliver feedback on hand use, and track
improvement over time. However, they have emphasized the
need for more nuanced contextual information, such as object
interactions or activities being performed, for meaningful
interpretation of metrics or effective therapy planning.

With the rapid advancement of object detection models in
the field of computer vision, new opportunities are emerging
to automatically detect and classify objects within egocentric
video footage, thereby encoding context in a scalable manner
from object interactions. We aimed to evaluate the efficacy
of models (e.g., Detic [12] and UniDet [13]) in detecting
various object classes in environments commonly found in
home-based settings, focusing on egocentric videos recorded
by individuals with stroke and SCI during outpatient therapy.
Our assessment covers their accuracy in detecting and classi-
fying objects ’in the wild’ and explores their appropriateness
for supplying the contextual information vital for informed
therapy planning, based on the premise that object interactions
correlate directly with ADLs.

By considering both the quantitative performance and the
nature of the errors made by these models, our work offers
a comprehensive insight into their potential application and



limitations in outpatient rehabilitation settings. This under-
standing of object detection model performance in a rehabil-
itation framework contributes to the broader discourse on the
integration of wearable and machine learning technologies in
therapeutic practices for individuals with conditions such as
stroke or SCI.

II. METHODS

A. Dataset

We used a dataset comprised of 2261 minutes of egocentric
video recordings derived from 16 participants, all of whom
demonstrated impaired hand functionality as a consequence
of SCI. This footage was procured from [11], which adhered
to the recording protocol delineated by [14]. The participants,
involved in an array of activities of daily living (ADLs)
within their natural environments, were recorded without any
imposed constraints. The duration of recorded footage varied
per participant, ranging from a minimum of 7 minutes to a
maximum of 229 minutes, with an average duration of 141.31
minutes (sd = 72.91 minutes).

The original recordings were segmented into 1-minute snip-
pets and classified into one of 7 predefined ADL categories
based on the participant’s actions observed within the snip-
pet: Communication Management (428 instances), Functional
Mobility (207 instances), Grooming & Health Management
(172 instances), Home Management (407 instances), Meal
Preparation and Cleanup (625 instances), Self Feeding (257
instances), and Leisure & Other Activities (165 instances).
Snippets containing sensitive information or devoid of object
interactions or hand movements were excluded from the
dataset. In cases where multiple ADLs were observed in
a single snippet, the snippet was assigned the label of the
predominant ADL (i.e., the one performed for the longest
duration within the minute).

A stratified sampling approach was implemented, wherein
two videos from each participant per ADL category were
randomly selected. Frames were then extracted at a rate of
1 FPS from these selected videos. Object annotations were
made in the extracted frames, wherein bounding boxes were
drawn around objects pertinent to the ADL being performed
and subsequently labelled using the 700 classes in the unified
label space from [13]. These labels were further consolidated
into 27 distinct object classes based on their functional sim-
ilarities: animal, food, plant, sports equipment, wheelchair or
walker, home appliance or tool, kitchen or cooking utensil,
tableware, drinkware, kitchen appliance, furniture, cabinetry,
furnishing, house fixture, electronics, tv or computer, phone
or tablet, cleaning product, toiletry, bathroom fixture, sink,
office stationary, clothing, footwear, clothing accessory, bag,
and other. The processed data used for model evaluation is
comprised of 1482 images, hosting a cumulative total of 4757
object annotations.

B. Model Selection and Evaluation

For our study, the critical criterion in model selection
was the ability to detect a multitude of common household

objects since these models performed inference on videos from
the home environments of individuals with stroke or spinal
cord injury. Two models, Detic [12] and UniDet [13], were
selected for evaluation as representative examples that met this
criterion.

The models were evaluated quantitatively using the Mean
Average Precision (mAP) metric, focusing on two dis-
tinct tasks: detecting all objects and detecting ’active ob-
jects’—those objects in contact with the participant’s hands,
identified using the Egocentric 100DOH model proposed in
[15]. Additionally, we explored the change in performance
obtained by grouping functionally similar objects, reflecting
our study’s emphasis on the contextual understanding of
rehabilitation settings.

A qualitative analysis was conducted to deepen our un-
derstanding of model performance by identifying common
misclassification themes and uncovering potential reasons un-
derlying model failures. This multifaceted evaluation approach
highlighted the models’ capabilities and limitations in detect-
ing household objects within a rehabilitation context, in line
with our study’s primary objective.

III. RESULTS

A. Quantitative Evaluation

The UniDet model was initially evaluated on all 700 original
classes, attaining mAP@0.5 scores of 0.038 for all objects
and 0.099 for active objects. Its performance improved signifi-
cantly when consolidated to 27 object classes, achieving scores
of 0.16 and 0.19 for all and active objects, respectively. Mean-
while, the Detic model, evaluated only on these 27 classes (due
to the dataset’s original labelling with the 700 Unidet classes),
outperformed UniDet with mAP@0.5 scores of 0.19 and 0.30
for all and active objects. A detailed comparison of the two
models’ performance is provided in Table I.

B. Qualitative Evaluation

Qualitative analysis revealed a few key challenges that
potentially impacted the performance of the models. First, the
presence of dark images in the dataset hindered the models’
ability to accurately detect objects (Fig. 1a). Second, motion
blur, a common occurrence in egocentric videos, posed a
significant challenge to accurate object detection (Fig. 1b).

The Detic model often detected many objects that were not
labelled in the ground truth, with a considerable portion of
detections being accurate (Fig. 1c). This is further supported
by observing the distribution of labels and prediction (Fig. 2).

TABLE I: Comparative evaluation of detection models

Model Objects Classes mAP@0.5
Unidet All 700 0.038
Unidet Active 700 0.099
Unidet All 27 0.16
Unidet Active 27 0.19
Detic All 27 0.19
Detic Active 27 0.30



(a)

(b)

(c)

Fig. 1: Examples of images where models did not detect any
objects due to (a) low-light images and (b) motion blur; (c)
there were also instances where the Detic model in particular,
would accurately detect objects that were not labelled in the
ground truth which could negatively affect model performance.
In all subfigures, the ground truth boxes are on the left, Unidet
predictions are in the middle, and Detic predictions are on the
right. Red bounding boxes denote predicted active objects.

Since the mAP metric is a measure of the precision and recall
of the model, the detection of these unlabeled objects would be
considered as false positives, thereby decreasing the precision
and consequently the mAP. This suggests that the mAP scores
reported might underestimate the models’ actual performance
in terms of object detection.

These results provide important insights into the capabilities
and limitations of the evaluated models in the context of
rehabilitation. The Detic model overall exhibited superior per-
formance, however, both models were affected by challenging
conditions such as dark images and motion blur. Furthermore,
the detection of unlabelled objects by the models suggests
potential areas for improvement in the ground truth labelling
process, which could in turn improve the models’ evaluated
performance.

IV. DISCUSSION

In object detection for therapy planning, we should focus on
the functional use of objects rather than their visual similarity
due to the importance of discerning ADLs, which serve as the
foundational benchmarks in gauging the efficacy of hand use
during the outpatient rehabilitation process.

Traditional object detection frameworks tend to cluster
objects based on shared visual characteristics, an approach that
may not align optimally with the objectives of rehabilitation
where the functional role of an object, in relation to the specific
activity being performed, carries a higher significance than
its visual attributes. For example, a knife and a pen may
bear a visual resemblance but are used in vastly different

manners during their respective ADLs (i.e., self-feeding vs.
communication management). Hence, shifting towards consol-
idating categories based on function instead of appearance may
enhance the model’s applicability to a rehabilitation context.

Fig. 2: Distribution of predicted versus ground truth labels.

We used the original models, which were trained on 700
classes for Unidet and 1203 classes for Detic, without any
retraining. These labels were then manually grouped into 27
functional categories, and the evaluation was performed on
these consolidated categories. This substantial reduction in
classes led to a notable rise in model performance (from 0.038
to 0.16 mAP), improved the user-friendliness of delivering
insights to clinicians, and potentially delivered more con-
textually pertinent information to clinicians since functional
object categories are tightly coupled with specific ADLs being
performed in the videos.

Low-light conditions and motion blur notably hindered
model performance. Low-light environments, characterized by
high noise, bad illumination, and low contrast, made feature



detection difficult. Motion blur, caused by head or hand
movements, could obscure object boundaries and create spatial
confusion, impacting object detection. Strategies to mitigate
these include image enhancement algorithms for low-light
situations and custom label generation for motion blur [16],
[17]. Additionally, attention mechanisms can help models
focus on areas more likely to contain objects relevant to ADLs
being performed in videos, enhancing detection efficiency and
reliability in outpatient rehabilitation.

While the results are promising, there are several limi-
tations to consider. For instance, ground truth labels were
only assigned to objects that were relevant to the ADL being
performed (e.g., if the participant was self-feeding, a plate and
spoon would be labelled, but the notebook next to them would
not be labelled), which could result in potential discrepancies
in model evaluation. As mentioned previously, if a model
correctly identifies an object that was not included in the
ground truth labels due to its perceived irrelevance to the ADL
by the labeler, it could artificially reduce performance metrics.
Future studies could address this limitation by employing
a more comprehensive labelling strategy that includes all
objects present, regardless of their direct relevance to the
ADL, thereby giving a more accurate representation of model
performance. Nonetheless, the analysis focusing on active
objects in this study partially mitigates this limitation.

Furthermore, the ground truth was labelled using UniDet’s
700 class label space, allowing for a comparison between the
performance of UniDet’s original classes and the consolidated
27 functional categories. However, a similar evaluation could
not be conducted for the Detic model due to differences in
classification schemes. This disparity presents a limitation in
the direct comparison of the two models’ performances.

Another limitation lies in the scope of the data used. The
current study was conducted using a limited dataset, which
may not fully represent the diversity of real-world scenarios
and ADLs. The dynamic nature of ADLs and the inherent
variability in how different individuals perform the same tasks
present a unique challenge to model performance. Future work
may need to account for this variability by incorporating
individual-specific training data or developing better methods
to handle task variability.

Other avenues for inquiry include exploring different la-
bel consolidation strategies, such as grouping by functional
category, as done in this study, versus grouping by visual
similarity. Through this, a more nuanced understanding of the
effects of label consolidation strategies on model performance
and interpretability could be developed.

V. CONCLUSION

This study explored the potential of object detection models
to recognize a multitude of common household objects in
egocentric videos recorded by individuals with stroke or SCI
and provide therapists with enriched contextual information
about hand use at home, thereby enabling more tailored ther-
apy planning. Results demonstrated the potential to provide
meaningful contextual information for rehabilitation therapy

planning using object detection. Consolidating object cate-
gories based on functional use significantly improved the
models’ performance and increased their applicability in reha-
bilitation. However, this research also highlights challenges,
such as low-light conditions and motion blur, that hindered
the models’ effectiveness. These findings emphasize the need
for specialized handling of such issues and an enhanced
ground truth labelling strategy. Overall, this work underscores
the potential of integrating machine learning models with
wearable technology for outpatient neurorehabilitation. With
continual refinement, these models can facilitate personalized
therapeutic strategies based on real-world hand usage patterns,
leading to more targeted treatment and improved patient
outcomes.
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