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Abstract— Gastric Intestinal Metaplasia (GIM) is a
precancerous gastric lesion and its early detection facilitates
patient followup, thus lowering significantly the risk of
death by gastric cancer. However, effective screening of this
condition is a very challenging task, resulting low intra
and inter-observer concordance. Computer assisted diagnosis
systems leveraging deep neural networks (DNNs) have emerged
as a way to mitigate these ailments. Notwithstanding, these
approaches typically require large datasets in order to learn
invariance to the extreme variations typically present in
Esophagogastroduodenoscopy (EGD) still frames, such as
perspective, illumination, and scale. Hence, we propose to
combine a priori information regarding texture characteristics
of GIM with data-driven DNN solutions. In particular, we
define two different models that treat pre-trained DNNs
as general features extractors, whose pairwise interactions
with a collection of highly invariant local texture descriptors
grounded on fractal geometry are computed by means of an
outer product in the embedding space. Our experiments show
that these models outperform a baseline DNN by a significant
margin over several metrics (e.g., area under the curve (AUC)
0.792 vs. 0.705) in a dataset comprised of EGD narrow-band
images. Our best model measures double the positive likelihood
ratio when compared to a baseline GIM detector.

Clinical relevance— Better automatic tools for Gastric In-
testinal Metaplasia detection can help mitigate human diagnos-
tic errors, which directly impacts gastric cancer mortality rate.

I. INTRODUCTION

Gastric cancer (GC) is the fifth most prevalent form of
cancer worldwide and is responsible for causing the third-
highest number of cancer-related deaths [1]. According to the
European Society of Gastrointerninal Endoscopy (ESGE),
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early diagnosis is crucial since the survival rate is just 24%.
However, it is also expected that effective early diagnosis
might lower mortality rates by 40% [2]. Improving the
diagnosis of Gastric Intestinal Metaplasia (GIM) is crucial
for screening effectiveness, since it is a critical precursor to
gastric cancer. Patients with GIM suffer from an increased
risk of developing gastric cancer by a factor of 10 [3]. GIM
can be characterized during Esophagogastroduodenoscopy
(EGD), a minimally invasive procedure for diagnosing pre-
cancerous or early cancerous conditions by detecting aberrant
tissue in the gastric mucosa using a Narrow-band Imaging
(NBI) modality. GIM screening is challenging since accurate
diagnosis depends on fine-grained details that characterize
GIM lesions on the gastric mucosa. In fact, the inter-observer
concordance among clinicians is low, with reports of up to
11.3% of upper gastrointestinal (UGI) cancer-related lesions
being missed during endoscopic screening up to 3 years
before diagnosis [4]. This motivates us to find an automatic
tool that is unaffected by subjective factors for optical diag-
nosis, such as the currently emerging deep neural networks
(DNN). DNNs have been successfully applied in the domain
of UGI endoscopy, such as landmark detection [5], detection
of gastric cancer [6], prediction of invasion status [7] and
GIM detection [8]. However, the data-driven nature of these
approaches implies that good performance is achieved in
the presence of a large quantity of high-quality data for
training. On the other hand, collecting endoscopic images
is an expensive procedure, with very limited public access
datasets. Furthermore, the downstream task of GIM detection
is very challenging since the views of the mucosa are sub-
jected to considerable scale and perspectives variance, while
simultaneously being populated by other phenomena, such as
bubbles, undigested food, and blood. In order to efficiently
cope with the lack of large, high-quality, annotated dataset,
we introduce a stronger inductive bias given knowledge of
the importance of texture in GIM detection by leveraging
features based on fractal geometry. The idea that fractal
descriptors combined with deep learning models could result
in a robust GIM detector was motivated by the usefulness
of fractal dimension in detecting texture patterns, especially
in natural images [9][10] and by the discriminative features
already obtained in a modality with very close visual char-
acteristics, more specifically, that of polyp characterization
in colonoscopy [11].



Fig. 1: Examples of two endoscopic images with GIM
outlined in white.

A. Contributions

We propose a new approach that bridges the gap be-
tween fine-grained classification and local texture descriptors
through a unifying bilinear model that combines the outputs
of a general purpose a convolutional neural network (CNN)
with patch-wise multi-fractal spectra. We show its applica-
bility in the task of GIM detection, a biomedical application
that benefits from the enhanced discriminative properties
of this approach since its target variable class depends on
subtle local aberrations in the gastric lining across several
scales, perspectives, and illumination variations. Our model
outperforms a pure CNN baseline throughout area under
the curve (AUC), true positive rate (TPR), true negative
rate (TNR), positive predictive value (PPV) and negative
predictive value (NPV) by almost 10% and exceeds the
results reported in a previous work [12].

II. MATERIALS AND METHODS

A. The GIM-NBI dataset

For the experimental purposes of this paper, we use a
dataset collected at the Gastroenterology department of In-
stituto Português de Oncologia, Porto (IPO-Porto), spanning
883 high-resolution images: 808 classified as normal, 64 as
GIM, 10 as dysplasia or carcinoma, and 1 as atrophic gastri-
tis. These data displays three distinct modalities: White Light
Imaging (WLI) and NBI. An endoscopist filtered frames with
the incorrect diagnosis of GIM, low resolution, and frames
captured in WLI. This results in a total of 125 high-quality
NBI images, 65 classified as normal (- class) and 60 as GIM
(+ class). If a discernible metaplastic pattern is visible in
the mucosa and there are no other pathological findings in
the scene, the image is classified as belonging to the + class.
The dataset is populated with frames collected from standard
clinical practice, so the mucosa is not always captured under
ideal conditions. Consequently, foam, bubbles, bile, blood,
alongside other pathological findings such as polyps may be
captured in the scene.

B. Methodology

1) Bilinear model: We follow [13], and define a bilin-
ear model as a quadruple B = ( fa, fb,P,C ), where fa :
RH×W×C → Rk×A and fb : RH×W×C → Rk×B are feature
extracting functions, P is a pooling function and C is a
classification function. A feature extracting function receives

an image and a location and outputs a feature vector. The
basic idea behind this model is to combine the output of these
two feature functions using the outer product at each location
of the image. Then, we define the pooling function as the
outer product between fa and fb, specifically fa(x)T fb(x),
where x ∈ RH×W×C and (·)T stands for the transpose op-
erator. Note that this pooling function is orderless, which
is proven to be an important property for texture and fine-
grained classification [13], [14]. Finally, this image descriptor
is given to the classification function to obtain the predicted
class. The main advantage of this model is that the outer
product captures pairwise correlations between the feature
channels and can model part-feature interactions.

2) Multi-fractal Spectrum: A fractal point set F has fine
structure, i.e., detail at arbitrary scales. Formally, this set
is required to have fractal dimension (β ) greater than its
topological dimension [15]. For our purposes, we can only
compute estimates of the fractal dimension due to finite
resolution. A common empirical prior is assuming that the
number of δ -covers M that span F vary proportionally to the
power of δ , as δ → 0:

M(F,δ )≈ kδ
−β =⇒ logM(F,δ ) ≈ logk−β logδ , (1)

where k,β ∈ R. Consequently, the empirical estimation of
the fractal dimension β will be:

β = lim
δ→0

logM(F,δ )
− logδ

. (2)

This result is of particular computational relevance, since β

can be approximated by determining the slope of the plot of
logM(F,δ ) versus logδ , for an appropriate finite range of
δ . Note that β is a global statistic with regards to F, which
does not translate realistically for most practical settings. A
simple example of its limitations is the case when F can
be partitioned into two or more disjoint sets generated by
independent fractal processes whose fractal dimensions are
significantly different under (2). Thus, we are also interested
in capturing local fractal behavior, i.e., a spectrum of fractal
dimensions that more accurately describe F. We use the
definition of a Multi-fractal spectrum (MFS) as proposed
by Yong Xu et al. [9] in order to collect viewpoint invariant
texture feature tensors.

Consider an image I defined over Ω ⊆ R2 and let µ be a
measure over Ω so that µ(x,r) = krβ̂ (I,x) for x ∈ Ω, where
β̂ (I,x) ∈ R is a density function and k ∈ R. Then, the local
density function or Hölder exponent is determined as:

β̂ (I,x) = lim
r→0

µ
(
B(I(x),r)

)
logr

, (3)

where B(I(x),r) denotes a closed disk of length r around
coordinate x in I. Clearly the density β̂ (I,x) can be estimated
in a very similar way to (2). We partition Ω using the
following level-set categorization:

F
β̄
=
{

x ∈ Ω : β̂ (I,x) = β̄

}
. (4)



The MFS can thus be determined by computing the fractal
dimension according to (2) for each possible categorization:

MFS(I) =

{
lim
δ→0

logM(F
β̄
,δ )

− logδ
: β̄ ∈ R

}
. (5)

In practice, we define a suitable range N, and compute (5)
using a uniform partition of [0,N] into m discrete uniformly
spaced bins, instead of operating point-wise for all R.

Note that we chose the above-mentioned construction of
MFS(·) since it can be shown that it is invariant under the
bi-Lipschitz map [9]. These theoretical guarantees make the
descriptor specially suitable for our downstream task, since
the region of interest can be subjected to drastic perspective,
scale, color, and illumination changes.

Concerning the choice of µ , we again follow Yong Xu et
al. [9], and define three distinct measures. Firstly:

µ1
(
B(I(x),r)

)
=

∫
B(I(x),r)

Gr ∗ I(x)dx, (6)

where Gr is a Gaussian blur filter with variance r, and
‘∗’ is the convolution operator. Secondly, assuming that
g1,g2,g3, and g4 are the differential operator for vertical, hor-
izontal, diagonal, and anti-diagonal directions, respectively:

µ2
(
B(I(x),r)

)
=

∫
B(I(x),r)

4

∑
i=1

gi(Gr ∗ I(x)
)

dx. (7)

Finally, we also calculate the MFS using a measure based
on the sum of Laplacians:

µ3
(
B(I(x),r)

)
=

∫
B(I(x),r)

|∇2(Gr ∗ I(x)
)
|dx. (8)

Note that we convolve with gaussian smoothing kernels
for each µ . This attenuates the local effect of noise, which
can result in imprecise estimates of the Hölder exponents.

The final MFS feature tensor is simply the concatenation
of the MFS spectra over µ1, µ2, and µ3.

3) Pre-processing: First, we crop excessive black borders
and remove the system status information for each frame,
resulting in image tensors with the shape 1078× 1348× 3.
Then, we increased the dimension of the images to 1078×
1351×3 using bilinear interpolation, and divide the images
into 7×7 non-overlapping grayscale patches with the shape
of 154×193×1. This makes the dimension compatible with
the embedding of the VGG-16, that is 7×7×512. Then, the
MFS of each patch is computed and the resulting spectra are
collected into a tensor of dimension 7×7×78. The second
dimension of the tensor is 78 since we are considering m =
26 points for each of the MFS spectra. The MFS vectors
computed were normalized using the standardization method
(µ = 0 and σ = 1).

4) Proposed approaches: We propose two bilinear models
B1 and B2, that use the same pooling function defined in
section II-B.1, and the same classification function that is a
multi-layer perceptron (MLP) composed by two consecutive
dense layers with rectified linear unit activation function fol-
lowed by their respective dropout probabilities and an output

(a) Baseline model.

(b) Model B1.

(c) Model B2.

Fig. 2: Structure of the baseline and the proposed approaches.

layer which is a single neuron with a sigmoid activation
function.

For B1, fa is the output of the global average pooling of a
pre-trained VGG-16 and fb the maximum response over µ1,
µ2, and µ3. The idea of using the maximum response is to
take the maximum along patches, so that, if there is a patch
with a high response that should be interpreted as a portion
of the image with GIM (see Fig. 2b).

Concerning B2, fa we directly use the embeddings of
the VGG-16 and fb the response over µ1, µ2, and µ3 for
the 49 patches (see Fig. 2c). In contrast with B1, B2
retains information about patch location before applying the
outer product, thus enabling explicit spatial representation of
pairwise interactions.

5) Data augmentation: In order not to compromise the
visibility of a lesion in an image in the (+) class, we decided
to limit our data augmentation to three linear transformations:
random horizontal and vertical flips, and adding Principal
Component Gaussian noise to the color channels [16].

III. EXPERIMENTAL METHODOLOGY

We implement a VGG-16 pre-trained in the ImageNet
dataset as a baseline (see Fig. 2a) since it achieved the
best performance among different pre-trained architectures
for GIM detection tested over our dataset in a previous
work [12], and we use the same hyperparameters for the
present study. In each of the three experiences, we used
stratified 5-fold cross-validation, where each fold was split
into 100 samples for the train set and 25 for the test set.
For each train set, the online data augmentation yielded an
average of 1214 samples, 632 of the negative class and 582
of the positive one. The same VGG-16 backbone is used as a
feature function in our proposed models. In order to estimate



TABLE I: The positive (LR+) and negative (LR-) likelihood ratios of each configuration on each fold.

Models Likelihood ratio Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean ± St. dev.

Baseline LR+ 9.750 1.083 2.167 1.950 4.333 3.857± 3.135
LR- .271 .813 .789 .406 0 .455 ± .310

B1
LR+ 11.917 1.625 8.667 2.167 10.833 7.042 ± 4.333
LR- .090 .464 .361 .481 .181 .316 ± .155

B2
LR+ > 20 1.733 4.333 1.986 10.833 7.777 ± 6.938
LR- .083 .542 .394 .155 .181 .271 ± .170

Fig. 3: Boxplots with the metrics computed for each fold
obtained in 5-fold cross-validation for the three different
models.

the MFS, we set r,δ ∈ {1,2,3,4,5,6,7,8} and we defined
m = 26 (number of bins to partition the interval [0,N]) .
To assess the performance of the models we selected 5
evaluation metrics: positive predictive value (PPV), negative
predictive value (NPV), Sensitivity, Specificity, and AUC
(Fig. 3). We also calculated Positive (LR+) and Negative
(LR-) likelihood ratios:

LR+=
Sensitivity

1−Speci f icity
, (9)

LR−=
1−Sensitivity

Speci f icity
. (10)

We display the LR+ and LR- in Table I to evaluate the
inter-fold diagnostic variability for each model. Notice that
when computing the LR+, if the specificity is 1, the value is
not defined. Thus, we define a maximum value of 20 when
computing the mean and standard deviation and denote these
cases by ’> 20’ in Table I.

A. Discussion

Regarding the results represented in Table I and in the
boxplots of Fig. 3, we noticed that there is a clear difference
between the proposed bilinear MFS models and the baseline.
The values for the AUC, Specificity, and PPV obtained for
the proposed models exceed substantially the baseline. The
range of the values showed in the boxplots for each metric
reveals that the baseline has higher variability throughout
each fold, specially for the Specificity.

Regarding B1 B2 we can see that the boxplots are similar
for all the metrics, but the values for the likelihood ratio
displayed in Table I are better for B2, except for the fold 3
and the LR- in fold 2.

Fig. 4: Examples of images failed by the baseline and not
by the other two models (top row) and the opposite (bottom
row). The true label of each image is represented in the top
left corner with a + if it has intestinal metaplasia and with
− if it’s normal.

In order to understand better the behavior of our ap-
proaches, we verified which images our models fail and the
baseline does not, and vice-versa. An example of this is
represented in Fig. 4. We observe that the baseline tends
to classify as positive several images containing irregular
texture patterns, even when those do not represent intestinal
metaplasia (see the two negative images in top row of
Fig. 4), and fails in images without zoom (positive image in
top row of Fig. 4). Regarding the proposed approaches we
noticed that they fail in images influenced by a challenging
perspective (second and third image of the bottom row of
Fig. 4) that are hard to identify even to a human operator,
and normal images in which the presence of noise induce
the model to identify as intestinal metaplasia (first image of
the bottom row of Fig. 4). We hypothesize that if we used
a finer grid the results would be better since MFS will be
more precise in characterizing the lesion.

This study has three main limitations. Firstly, the dimen-
sions and level of overlap of the patches extracted from the
images to calculate the MFS spectra have not been optimized
for this problem. The choice of these parameters was dictated
by the dimensions of the embeddings obtained with the
VGG-16 network to compute outer products. Secondly, the
images in the GIM-NBI dataset were only annotated by a
single expert. Finally, this dataset has no patient information,
hence a per-patient analysis was not possible.

IV. CONCLUSIONS

In this work, a hybrid deep learning network including
explicit fractal descriptors is applied to detect GIM for



endoscopic imaging data. The superior results obtained with
the proposed approach showed that this inductive bias based
into a DNN achieves reliable GIM detection, even with a
reduced amount of training samples.

Future work will focus on optimizing trade-off between
complexity and resolution regulated by the patch size
adopted in the model. Moreover, end-to-end training of
fractal encoders similar to those proposed by Xu et al. [17]
will be considered.
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