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Abstract—Intravascular Optical Coherence Tomography 
(OCT) has emerged as a powerful imaging modality for 
assessing the morphological characteristics of coronary arteries. 
Quantification of calcified coronary arteries from OCT images 
is crucial for evaluating the severity and progression of coronary 
artery disease. However, in current practice, OCT images are 
interpreted manually which is time-consuming, subjective, and 
prone to inter- and intra-observer variability. To address these 
limitations, we propose a framework for automated 
quantification of calcified coronary arteries from OCT images. 
By leveraging deep learning techniques, the proposed 
framework automatically segments lumen and calcified plaque 
from OCT images. Subsequently, comprehensive morphological 
analysis of lumen and calcified plaque is performed using 
advanced image processing algorithms, allowing for retrieval of 
various dimensions of corresponding structures. Following that, 
essential shape measurements are derived to ensure adequate 
characterization of calcified coronary arteries. The efficacy of 
the proposed framework was validated on a clinical dataset. 
Extensive experiments have demonstrated high accuracy and 
consistency of quantitative results estimated by the proposed 
framework against manual analysis with relative errors of less 
than 10%. The proposed framework holds great potential to 
extend its application to characterization of other non-calcified 
plaques and arteries, aiding in clinical intervention and 
translational research using OCT. 

Keywords—intravascular OCT, coronary artery calcification, 
quantitative analysis 

I. INTRODUCTION 
Coronary artery calcification is concomitant with the 

development of advanced atherosclerosis [1]. Both the extent 
and pattern of calcification provide valuable information 
about the progression and severity of disease [2]. Calcification 
impairs coronary blood flow and poses challenges to 
intervention procedures by inhibiting optimal device 
deployment, poorly portending for complications and stent 
failure [3]. Thus, quantitative assessment of coronary 
calcification plays an indispensable role in clinical risk 
stratification, monitoring disease progression, guiding 
therapeutic interventions, and evaluating treatment efficacy. 

Intravascular optical coherence tomography (OCT) has 
emerged as a powerful imaging modality for assessing 
morphological characteristics of coronary artery. It provides 
exceptionally high-resolution cross-sectional images of the 
coronary arteries which allows for identification and 
characterization of calcified plaques with superior clarity 

compared to other imaging modalities [4]. OCT is therefore 
increasingly leveraged for guiding interventions, ensuring 
accurate deployment and optimizing outcomes. However, in 
current practice the extraction and interpretation of OCT 
features are predominantly performed by trained experts. Due 
to large volume of image frames in OCT pullbacks (ranging 
from 300 to 500 frames per pullback), this manual reviewing 
process is labor-intensive, time-consuming, and subject to 
significant inter- and intra-observer variability. There is a 
recognized need for automated image analysis and annotation 
methods to improve efficiency, standardization, and accuracy 
in interpreting OCT images. 

Recent years have witnessed a surge of research dedicated 
to leveraging deep learning techniques for automated plaque 
characterization from OCT images. Athanasiou, et al. [5] 
developed a 45-layer convolutional neural network (CNN) to 
detect calcified, lipid, fibrous, mixed, non-visible, and non-
pathological tissue within arterial wall. Kolluru, et al. [6] used 
a 7-layer CNN to classify A-lines of different plaques from 
OCT images. In recent studies, Gessert, et al. [7] employed 
state-of-the-art deep learning models to directly classify 
plaques from the images. Abdolmanafi et al. [8] utilized 
pretrained, end-to-end fully convolution neural network for 
segmentation of calcified, fibrotic, infiltrated macrophage and 
neovascularized lesions. Avital et al. [9] applied U-Net to 
recognize calcifications from OCT images. Gharaibeh et al. 
[10] built a platform for automatic segmentation of lumen and 
calcified plaque followed with semiautomatic measurements 
of calcified arc and thickness from OCT images using image 
processing techniques. 

While the preceding literature review showcased notable 
advancements in automated OCT analysis, it is important to 
acknowledge that the majority of the studies have primarily 
focused on plaque classification and segmentation by 
embedding various existing CNN architectures. The 
automatic quantification of calcified arteries from OCT 
images is still underexplored.  

This paper presents a comprehensive framework for 
automated quantification of calcified artery from OCT 
images. The proposed framework begins by utilizing our 
previously developed Transformer-based segmentation model 
to identify lumen and calcified plaque regions. The segmented 
masks are then subjected to morphological analysis, enabling 
direct measurement of various luminal and plaque 
dimensions. Following that, essential shape measurements are 
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derived to adequately characterize calcified coronary arteries. 
The proposed framework achieved promising performance 
when evaluated on clinical dataset in comparison to manual 
annotation and quantification. 

II. METHOLODGY 
The framework (Fig. 1) involves: deep learning-based 

OCT segmentation; morphological analysis of lumen and 
calcified plaque regions; and quantification of critical 
properties. 

A. Deep Learning-Based Segmentation 
Intravascular OCT images, given their highly contextual 

nature, require understanding of spatial relationships and 
structures to accurately identify and quantify calcified 
coronary arteries. They capture not only detailed information 
about the composition of the vessel but also provide 
contextual cues regarding the intricate relationships between 
lesions, lumen, arterial wall, and various artifacts (i.e., 
guidewire, residual blood, etc.). Existing methods to segment 
atherosclerotic plaques from OCT images have been 
predominantly fueled by integration of CNNs. Despite their 
success in capturing local features, the limited receptive field 
inherent to convolution operation restricts their performance 
in capturing global contexts. In contrast, Transformer 
architecture [11] has shown promise in capturing global 
context and long-range dependencies in images by leveraging 
self-attention mechanisms. Transformers are particularly 
beneficial when it comes to identifying calcified coronary 
arteries where contextual information plays a crucial role. In 
this framework, our previously developed Transformer-based 
encoder-decoder model [12] was used to conduct end-to-end, 
semantic segmentation of OCT images. Given an original 
OCT image (Fig. 1(a)), the output of the model was the 
segmented lumen and calcified plaque covered with red and 
blue masks, respectively (Fig. 1(b)). 

B. Morphological Analysis 
The luminal and calcified plaque properties were 

measured in pixels from the segmented mask. The contours of 
both lumen and calcified plaque were traced (Fig. 1(c) and 
Fig. 1(d)) and the skeleton of calcified plaque (Fig. 1(f)) was 
constructed by identifying the centroids of circles tangent to 
the calcified plaque contours (Fig. 1(e)). The Feret diameter 
(also known as caliper diameter), referring to the distance 
between two parallel lines that can be drawn perpendicular to 
each other and touch the boundary of region of interest, can 
then be measured (Fig. 1(h)). This is an essential metric for 

characterizing the size, shape, and spatial extent of objects in 
the image. 

Table 1 illustrates the pseudocode for the algorithm 
designed to calculate the maximum and minimum Feret 
diameter denoted as Fmax and Fmin. The convex hull of the 
lumen was determined as the smallest convex polygon that 
encompassed all the lumen boundary points (Fig. 1(g)). By 
iterating over all the edge points Pi (i=1,2,…n), all the 
Euclidean distances d between each pair of edge points on the 
convex hull were calculated to obtain the maximum and 
minimum Feret diameter (blue and red solid lines in Fig. 1(h)). 
Similarly, the Feret diameter of calcified plaque was also 
measured. 

TABLE I.  FERET DIAMETER CALCULATION ALGORITHM 

Algorithm 1 Calculate Feret diameter 
Input: Segmented mask 𝐼 containing the region of interest  
Output: 𝑭𝒎𝒂𝒙, 𝑭𝒎𝒊𝒏 
1: compute the convex hull of the boundary pixels 𝐻 =

{(𝑥& , 𝑦&), 𝑖 = 1,2, … , 𝑛} 
2: initialize 𝐹'() = 0, 𝐹'&* = ∞ 
3: for 𝑃& = (𝑥& , 𝑦&) in 𝐻 do 
4:     for 𝑃&+, = (𝑥&+,, 𝑦&+,) in 𝐻 do  
5:         𝑑 = 6(𝑦& − 𝑦&+,)- + (𝑥& − 𝑥&+,)- 
6:         𝐹'() = 𝑑 
7:         if  𝐹'() < 𝐹'&* then 
8:             𝐹'&* = 𝐹'() 
9:         end 
10:     end 
11: end 
12: return 𝐹'(), 𝐹'&* 

 

C. Properties Calculation 
 The prior morphological analysis allows for measuring the 
basic geometric dimensions of luminal and calcified plaque. 
Several essential shape descriptors were further calculated to 
ensure adequate characterization of calcified coronary artery 
for comprehensive clinical assessment. Table 2 summarizes 
all the properties related to lumen and calcified plaque.  

The luminal and plaque area and perimeter were derived 
from the enclosed area and length of contours of 
corresponding regions. By projecting a straight line from the 
centroid of lumen, the intersection points between this line and 
lumen contour were obtained. Considering the irregular shape 
of lumen, the minimum diameter 𝑑'&* (white line in Fig. 1(j)), 

 

 
Fig. 1. Framework overview. (a) Original OCT image. (b) Segmented lumen and calcified plaque. (c) Calcified plaque contour. (d) Lumen contour. (e) 
Skeleton extraction process. (f) Skeleton of calcified plaque. (g) Convex hull of lumen. (h) Feret diameter of lumen. (i) Calcified plaque thickness measurement. 
(j) Lumen and calcified plaque properties quantification.  
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maximum diameter 𝑑'() (purple line in Fig. 1(j)), and mean 
diameter were calculated by comparing the Euclidean 
distances between each pair of intersection points. Similarly, 
the intersection points between the line and plaque contour 
were obtained (blue lines in Fig. 1(i)). The calcified plaque 
thickness was determined by measuring the maximum 
Euclidean distance between each pair of intersection points 
(pink line in Fig. 1(i)). The calcified plaque arc was quantified 
by computing the angle between two lines connecting the 
centroid of the lumen and the two endpoints of the calcified 
plaque skeleton (blue lines in Fig. 1(j)). 

TABLE II.  LUMEN AND CALCIFIED PLAQUE PROPERTIES 

Lumen Properties Calcified Plaque Properties 
Area Arc 
Perimeter Thickness 
Mean diameter Area 
Circularity Perimeter 
Convexity Circularity 
Solidity Convexity 
Asymmetry Solidity 
Elongation Elongation 

 

Apart from the above geometric properties, several shape 
descriptors were further calculated to characterize the lumen 
and calcified plaque appearance from different perspectives, 
including circularity, convexity, solidity, elongation, and 
asymmetry ((1)-(5)). 

 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = ./×123(
(56*73)	932&'3:32)!

 (1) 

 𝐶𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 = 56*73)	932&'3:32
932&'3:32

 (2) 

 𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦 = 123(
56*73)	123(

 (3) 

 𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 = 𝑭𝒎𝒊𝒏
𝑭𝒎𝒂𝒙

 (4) 

 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 = 𝒅𝒎𝒊𝒏
𝒅𝒎𝒂𝒙

 (5) 

III. EXPERIMENTAL VALIDATION 
The proposed framework was validated on a clinical OCT 

dataset, demonstrating its promising performance when 
compared to manual annotation and quantification.  

A.  Dataset 
The dataset consisted of 2000 image frames from 

pullbacks of 60 patients who were potential candidates for 
intravascular lithotripsy (IVL, Shockwave, CA). Such a 
cohort is more desirable to challenge our platform as IVL-
candidate plaques are majorly calcium-heavy. In total 1800 
images from 50 pullbacks and 200 images from 10 pullbacks 
were randomly selected from the dataset for training and 
testing of the segmentation model, respectively. The test set 
was further used to assess the quantification performance. 
Each image was set of a consistent size of 500×500 pixels. 
The training and testing sets incorporated coronary arteries 
distorted to a varying extent and severity of calcification. The 
ground truth was provided by expert readers through manual 
annotation of and measurements from OCT images.  

B. Experimental Settings 
1) Implementation details: Data augmentation techniques 

including geometric transformations and photometric 

transformations were applied to the training set to improve the 
diversity of the image data. The segmentation model was 
trained using the AdamW optimizer with a weight decay of 
0.01. A batch size of 4 was used, and the training process 
consisted of 120,000 iterations. A learning rate warmup 
strategy was employed with an initial learning rate of 6𝑒>?.  

2) Evaluation metrics: The performance of the 
segmentation model was evaluated using Intersection over 
Union (IoU), dice score, precision, and recall, which are 
defined as follows: 

 𝐼𝑜𝑈 = @9
@9+A9+AB

 (6) 

 𝐷𝑖𝑐𝑒	𝑆𝑐𝑜𝑟𝑒 = -@9
-@9+A9+AB

 (7) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = @9
@9+A9

 (8) 

 𝑅𝑒𝑐𝑎𝑙𝑙 = @9
@9+AB

 (9) 

where TP (true positive) and TN (true negative) represent 
pixels that are correctly classified, and FP (false positive) and 
FN (false negative) represent pixels that are falsely classified 
as target region and background, respectively. The 
quantitative analysis results were evaluated through 
comparison against manual survey. The relative errors for 
estimations were computed as indicators of the quantification 
framework performance as formulated in (10): 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝐸𝑟𝑟𝑜𝑟 = |D'()*>D+,-*(.*/|
D'()*

 (10) 

where 𝑉@2E3 and 𝑉FGH3273I represent true value and observed 
value respectively. 

C. Experimental Analysis 
 Given the critical role of the OCT segmentation step in the 
overall quantitative analysis, the segmentation performance 
was primarily evaluated. Table 3 and Fig. 2 showcases the 
experimental results for the segmentation of the lumen and 
calcified plaque. It can be observed that the segmentation 
model was able to accurately delineate both lumen and 
calcified plaque with achieved dice score, precision, and recall 
of over 90%.  

TABLE III.  QUANTITATIVE OCT  SEGMENTATION RESULTS 

Target Region IoU Dice Precision Recall 
Lumen 0.9224 0.9578 0.9844 0.9374 
Calcified plaque 0.8462 0.9167 0.9120 0.9214 

Fig. 2. Example images of segmentation results.  
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The lumen and calcified plaque quantification results were 
further evaluated through comparison with manual 
measurements from images. The calculated relative errors of 
lumen and calcified plaque are illustrated in Fig. 3 and Fig. 4, 
respectively. It is noteworthy that the mean relative errors for 
all the measured luminal and calcified plaque properties were 
below 10%. Particularly, the proposed framework exhibited 
higher accuracy and stability in lumen quantification 
compared to calcified plaque quantification. This observation 
can be attributed to the superior performance of the model in 
segmenting lumen in comparison to the calcified plaque. 
Future research and development efforts should focus on 
advancing the segmentation algorithms to ensure more 
accurate and reliable quantification results. In addition to the 
2D features extracted in this work, 3D features such as 
volume-related properties can be further explored in the future. 

 

 
Fig. 3. Boxplot of lumen quantification results. 

 
Fig. 4. Boxplot of calcified plaque quantification results. 

IV. CONCLUSIONS 
The framework presented in this study offers an automated 

approach for quantifying calcified coronary artery using 
intravascular OCT images. The effectiveness of the 
framework in accurately estimating various properties related 
to the lumen and calcified plaque was successfully 
demonstrated through rigorous comparison with manual 

measurements. Experimental results highlight the significance 
of segmentation performance in improving the accuracy of 
subsequent quantifications. The proposed framework can be 
further developed to encompass the characterization of other 
atherosclerotic lesions, thereby enhancing its capabilities to 
support informed clinical decision-making in the diagnosis 
and treatment of atherosclerosis.  
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