
  

  

Abstract—Accurate and continuous monitoring of arterial 
blood pressure (ABP) is vital for clinical hemodynamic 
monitoring. However, current methods are either invasive, 
requiring insertion of catheters, or provide limited information, 
lacking comprehensive ABP waveforms. Cuffless wearable 
solutions, combined with deep learning, offer potential but face 
challenges in accurately reconstructing ABP waveforms and 
estimating systolic and diastolic blood pressure (SBP/DBP) due 
to individual variability. We propose a custom pre-trained 
backbone and a tailored optimization function to address these 
challenges. Our method demonstrates superior performance in 
ABP waveform reconstruction and accurate SBP/DBP 
estimations, while significantly reducing subject variance. To 
validate the effectiveness of our approach, we conducted 
comprehensive evaluations using both in-clinic data and a 
pioneering study involving remote health monitoring with 
cuffless data. Our results surpass previous efforts, 
demonstrating a root mean square error (RMSE) of 5.41 ± 1.35 
mmHg and a minimum of 58% lower standard deviation (SD) 
across all measurements. These outcomes highlight the 
robustness and precision of our method in accurately estimating 
SBP/DBP and reconstructing ABP waveforms. Furthermore, we 
assessed the performance of our solution in non-clinical settings 
using the CTRAL BioZ dataset. The evaluation yielded an 
RMSE of 8.66 ± 1.13 mmHg for ABP, proving the potential of 
ABP reconstruction under remote health settings. 

Clinical Relevance—ArterialNet is a competitive alternative 
to replace invasive arterial lines via reconstructing ABP 
waveform with accurate physiological predictions from 
peripheral pulsatile recordings. 

I. INTRODUCTION  

Hemodynamic monitoring is critical in clinical outcomes 
and patient safety by providing early warning signs of 
cardiovascular-related adverse events such as cardiogenic 
shock [1]. Continual tracking of arterial blood pressure (ABP) 
is the basis of accurate monitoring in perioperative and 
postoperative settings. However, this monitoring, which 
records a continuous and accurate hemodynamic data stream, 
is invasive, through the insertion of arterial lines. 
Alternatively, non-invasive blood pressure cuffs provide 
periodic measurements that serve as a surrogate for 
hemodynamic changes (in this case blood pressure changes) 
but collect sparse, limited readings [2]. Thus, arterial lines are 
always preferred in critical settings despite potential secondary 
complications, such as bleeding and infection [3]. Conversely, 
in remote health settings, the invasive nature of A-line makes 
it impractical for hemodynamic monitoring with ABP 
waveform. 
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Recently, there has been a growing interest in cuffless 
wearable sensors that utilize peripheral pulsatile recordings to 
offer convenient and non-invasive continuous blood pressure 
(BP) measurement through beat-to-beat estimation. By 
leveraging deep learning (DL)-based regression algorithms, 
these cuffless approaches have demonstrated precise and 
correlated predictions for systolic and diastolic blood pressure 
(SBP/DBP) values, meeting the standards of the medical 
industry [2]. Moreover, DL-enhanced sequence-to-sequence 
(seq2seq) modeling has improved ABP sequence 
reconstruction by mapping pulsatile signals to the ABP 
waveform [3]. However, the significant variability in BP 
modeling between individuals hinders an accurate DL solution 
for everyone.   

While there have been limited attempts for personalized 
ABP monitoring in clinical settings, these efforts only work on 
some subjects but inflict significant errors on others. 
Additionally, models solely trained on waveform 
reconstruction often result in inaccurate estimations of 
physiological characteristics such as SBP and DBP. 

This work involves leveraging a custom pre-trained 
backbone and implementing a tailored optimization function, 
followed by applying transfer learning to develop personalized 
ABP monitoring. Instead of designing a pre-trained model 
specifically for the task, we utilized seq2seq models as 
backbones for signal modality transformation, enabling us to 
develop downstream tasks for waveform reconstruction and 
SBP/DBP estimations. In this study, we propose ArterialNet, 
a framework for ABP reconstruction that is independent of the 
specific backbone used, and we make the following 
contributions:  

• A feature extractor that captures temporal dependencies 
by extracting long sequences of previous cardiac cycles 
and removes subject dependencies, allowing us to 
minimize covariate shifts [4]. 

• A hybrid objective function that evaluated both waveform 
and statistical reconstruction losses. This approach helped 
the ArterialNet understand the distribution of correct ABP 
waveforms and achieve accurate estimations of both 
morphologies and amplitudes. 

• A subject-invariant regularization that enables training 
multiple subjects in parallel and guides the backbone’s 
convergence to an extrapolated cohort instead of any 
individual. 
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We demonstrated our pre-trained ArterialNet achieved 
higher accuracies for both ABP reconstruction and SBP/DBP 
estimation than previous works on prediction and 
reconstructions tasks from data captured from both intensive 
care unit (ICU) patients and non-ICU subjects via a cuffless 
bio-impedance-based wearable device.  

II. RELATED WORKS 
The existing literature on ABP measurement has focused 

on minimizing reconstruction loss of ABP waveforms using 
pulsatile recordings or derived features. Many studies 
reconstructed ABP by incorporating at least two pulsatile 
recordings from different parts of the human body, as pulse 
transit time (PTT) is inversely correlated with BP vitals [5] 
For example, Hill et al. used a modified V-Net backbone to 
impute ABP waveform using electrocardiography (ECG) and 
photoplethysmography (PPG) recordings [6]. 

Maintaining two recording sites may be challenging, so 
other solutions have been developed with single-channel 
pulsatile recordings and reported competitive performance. 
For example, Ibtehaz et. al. applied a modified U-Net 
backbone with raw PPG waveform recordings [7]. However, 
neither approach failed to minimize errors and variances in 
SBP/DBP estimations. In contrast, our ArterialNet integrates 
seamlessly with various single-channel PPG seq2seq 
backbones, such as U-Net and transformer, to elevate 
performance in both ABP reconstruction and SBP/DBP 
estimations. 

III. METHODS 

In this section, we discussed data preparation, and the 
proposed ArterialNet, illustrated in Figure 1, beginning with 
the feature extractor, data is provided to the seq2seq 
backbone, optimized by a hybrid objective function and the 
subject-invariant regularization, and ultimately both 
waveform and SBP/DBP estimates are generated. We also 
share the implementation and experiment setup (next section) 
at https://github.com/stmilab/ArterialNet. We discuss the 
components further in the following section.  

A. Feature Extractor 
We designed the feature extraction encoder as a dilated 

convolutional neural network (CNN) that includes both 

convolutional layers (convlayers) and fully connected layers 
(fclayers). The convlayers consist of two 1D convolutional 
layers with dilation, each followed by a leaky rectified linear 
unit (ReLU). Meanwhile, the fclayers comprised three fully 
connected linear layers with another leaky ReLU activation 
function. We applied one-dimensional batch normalization 
between every layer of both the convlayers and fclayers. 

B. Seq2seq Backbone  
ArterialNet was flexible to incorporate both approaches as 

backbones. We chose an improved U-Net variant [8] and a 
transformer as they achieved state-of-the-art on several 
related works.  

C. Hybrid Loss Function 
We selected root-mean-squared error (RMSE) as the 

reconstruction loss criterion and denoted the loss function as 
λ, the hybrid loss function as Λ, the predicted and reference 
waveform as θ�  and θ, respectively. We implemented a non-
gradient function to the 5 statistical features (Ψ) {mean, 
standard deviation, skewness, minimum, and maximum} from 
θ and Ψ�  from θ� , respectively. Then, we defined a weight 
hyperparameter α [0,1] to adjust statistical importance and 
guide the ArterialNet to learn the distribution of ABP 
waveforms with the following hybrid loss function (1):  

 Λ(θ�, θ) = (1 − α) ∗ λ(θ�, θ) + α ∗ λ(Ψ� ,Ψ). (1) 

The hybrid loss function calculated and returned the 
modified reconstruction loss of predicted and reference 
waveforms.  

D. Subject Invariant Regularization  
We implemented a subject-invariant regularization layer to 

minimize the impact of subject-dependent features when pre-
training ArterialNet with multiple subjects. To achieve this, 
we adopted Krueger's variance risk extrapolation (REx) 
theory [9] and a regularization layer that calculated the 
regularized loss (Ω) of all training losses ({Λ1, Λ2, ..., Λn}) by 
adding weighted variance (σ2) to the sum (Σ) in equation (2):  

 Ω(θ�) = β ∗ σ2({Λ1, Λ2, ..., Λn}) + Σ({Λ1, Λ2, ..., Λn}). (2) 

We defined the weight hyperparameter β [0, ∞) to control 
the magnitude of extrapolation. This regularization layer 
applied variable weights to different subjects and manipulated 
the rate of backpropagation of ArterialNet to different training 
data. This regularization strategy ensured that the model was 
optimized for the extrapolated (subject-invariant) population 
instead of the observed training subjects, thus minimizing 
subject-dependent features. To validate the success of 
extrapolation, we evaluated it on a held-out subject.  

IV. EXPERIMENTS AND RESULTS 

We evaluated the effectiveness of ArterialNet in generating 
accurate ABP waveforms by comparing its performance with 
the previous methods. We provide a detailed description of 
the datasets and experimental setup used, report the results of 
our experiments, and discuss the insights and findings that 
were obtained.  

We evaluated the performance with absolute values and 
standard deviation (SD) of RMSE, mean-absolute-error 

 
Figure 1: Overview of the proposed ArterialNet, an ABP Modeling 
Framework pre-trained with multiple subjects and then calibrated with 
a new subject using a subset of one’s recordings. 



  

(MAE), and Pearson’s correlation coefficient (R) between 
reconstructions/estimations and references. 

A. Dataset Selection 
1) ICU Data Collection 

We utilized the Medical Information Mart for Intensive 
Care III (MIMIC-III) waveform dataset [10], which contained 
22,317 pulsatile PPG, ECG, and associated ABP waveform 
records. To create a suitable dataset, we screened patients via 
their electronic health records (EHR) and removed the 
following: 1) Patients with extreme hemodynamics (e.g., 
extreme respiratory rate, oxygen saturation, etc.); 2) Patients 
with missing or flat recordings; 3) Patients with narcotic or 
illicit drug use, organ failure, or major internal bleeding during 
check-in. We established a cohort of 61 patients, with a median 
age of 65 years old and a range of 25-87, comprising 34 
females. The list of patients is available in our repository.  

2) Non-ICU Data Collection 
We conducted a study involving 20 healthy participants 

(45% male) between the ages of 18 and 40 years old to collect 
data from a non-ICU environment (IRB2020-0090F, Texas 
A&M University). We used a bioimpedance-based cuffless 
device [11] to compare against reference waveforms collected 
by a Finapres NOVA. Each participant completed an 8-
minute protocol consisting of 0.5 minutes of rest, 3 minutes 
of gripping a hand to raise BP, 1 minute of placing a foot in 
ice water to lower BP, and 3.5 minutes of rest to recover BP. 
Each participant repeated the protocols 4 times per visit and 
had 7 visits scheduled at least 24 hours apart.  

B. Data Preparation 
With collected pulsatile waveforms, we first applied a finite 

impulse response (FIR) bandpass filter of (0.5-8 Hz) to 
remove artifacts without distorting the signals. Then, we 
performed phase shifting to align pulsatile recordings features 
and ABP waveform labels and then segmented them into 
cardiac cycles based on maximum slopes [11].  

C. Experiment Results 
We selected five patients who are normotensive at 

admission {27172, 47874, 94897, 56038, 82574} from the 
MIMIC-III waveform cohort. We then pre-trained ArterialNet 
using four random patients and validated it on the remaining 

patient. After thorough hyperparameter tuning (we reported 
all tuning scope in our repository), we selected the best-
performing pre-trained ArterialNet, which had a batch size of 
512, a learning rate of 1e-5, and was trained for 75 epochs.  

1) MIMIC Experiments 
We used transfer learning to retrain the rest 56 patients 

individually and performed the same hyperparameter tuning. 
We evaluated ArterialNet’s performance on waveform 
reconstruction by comparing it against related studies with the 
following seq2seq backbones: long short-term memory 
(LSTM) [12], V-Net [6], U-Net [7], and Transformer [13]. 
Due to each study being conducted on a separate and 
undisclosed cohort, we have included their individual 
findings, alongside our own results, in Table 1.  

Our ArterialNet, employing both backbones, achieved 
significantly lower SD than baselines on derived SBP/DBP 
estimations. Furthermore, our study cohort was significantly 
larger, demonstrating ArterialNet's superior generalizability 
across diverse subjects. With Bland-Altman Analysis in 
Figure 2, we also demonstrated high agreement between 
ArterialNet’s reconstruction and reference waveform for 
individuals.  

2) BioZ Experiment 
We repeated the same process to pre-train ArterialNet 

with five trials, then retrain and test it on the rest of the trials. 
With the reported hyperparameter tuned results in Table 2, 
ArterialNet reconstructed correlated waveform, SBP, and 
DBP and proved the feasibility of waveform reconstruction 
via peripheral bioimpedance pulsatile. To the best of our 
knowledge, this is the first ABP reconstruction study with 
bio-impedance pulsatile on healthy participants.  

V. LIMITATIONS, FUTURE DIRECTIONS 
We have investigated the adaptability of ABP 

reconstruction models to new subjects, but minimizing 
calibration time is another crucial aspect. Therefore, our 
future work focuses on enhancing the practicality of 
ArterialNet in clinical settings by evaluating its performance 
on a diverse patient population. Additionally, we plan to 
explore various methods to minimize calibration time. 

Table 1: Performance evaluation of proposed ArterialNet versus related studies on both ABP waveform reconstruction and physiological estimations. 
Table of ABP Reconstruction Evaluation on ICU Data Collections collected with PPG and/or ECG 

Method Dataset # of 
Subjects 

Total data 
(hours) 

Performance Metrics (RMSE and MAE in mmHg, no unit for R) 

ABP (SD) SBP (SD) DBP (SD) 

RMSE MAE R RMSE MAE R RMSE MAE R 
LSTM 

[12] MIMIC 42 - 6.04 
(3.26) 5.98 0.95 2.58 - - 1.98 - - 

V-Net 
[6] 

MIMIC 
III 264 1923+ 5.82 - 0.96 - - - - - - 

U-Net 
[7] 

MIMIC 
II 942 354 - 4.60 

(5.04) - - 5.73 
(9.16) - - 3.45 

(6.15) - 

Transformer 
[13] MIMIC 241 150~241 - - - - 4.01 

(5.93) 0.90 - 2.97 
(3.87) 0.84 

ArterialNet 
U-Net 

MIMIC 
III 56 733 5.78 

(1.45) 
4.52 

(1.91) 
0.92 

(0.04) 
5.76 

(1.93) 
4.30 

(1.97) 
0.89 

(0.05) 
4.65 

(1.68) 
3.38 

(1.68) 
0.87 

(0.04) 
ArterialNet 
Transformer 

MIMIC 
III 56 733 5.41 

(1.35) 
4.17 

(1.29) 
0.91 

(0.04) 
5.26 

(1.35) 
4.15 

(1.32) 
0.90 

(0.03) 
4.01 

(1.55) 
3.17 

(1.37) 
0.88 

(0.01) 
 

 



  

VI. CONCLUSION 
 We introduce ArterialNet to improve ABP reconstruction 

and physiological estimations. We evaluated ArterialNet 
using MIMIC ICU datasets and observed superior 
performance and significantly reduced SD across all 
estimations that outperformed baseline methods. 
Additionally, we present the first exploration of ABP 
reconstruction using cuffless pulsatile signals and deep 
learning backbones in non-clinical settings, demonstrating the 
potential of ABP reconstruction using bioimpedance pulsatile 
signals. ArterialNet stands as a versatile and flexible pre-
trained framework, accommodating various backbones and 
signal modalities to minimize subject variability and 
maximize performance in waveform and physiological 
estimations. We passionately encourage all future endeavors 
to recognize the significance of both waveform reconstruction 
and physiological parameter estimations and strive to develop 
solutions that cater to a wide range of individuals.  
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Table 2: Performance evaluation of proposed ArterialNet on non-ICU data collections using Bio-Z pulsatile signal 

Method # of 
Subjects 

Total data 
(hours) 

Performance Metrics (RMSE and MAE in mmHg, no unit for Pearson’s R) 

ABP (SD) SBP (SD) DBP (SD) 

RMSE MAE Pearson RMSE MAE Pearson RMSE MAE Pearson 
ArterialNet 

U-Net 20 54 8.66 
(1.13) 

6.90 
(1.00) 

0.44 
(0.10) 

12.27 
(1.66) 

10.57 
(1.21) 

0.51 
(0.10) 

8.03 
(1.78) 

6.63 
(1.34) 

0.39 
(0.09) 

ArterialNet 
Transformer 20 54 8.91 

(1.14) 
6.93 

(0.81) 
0.43 

(0.12) 
14.10 
(1.81) 

10.69 
(1.54) 

0.49 
(0.10) 

9.08 
(1.91) 

7.85 
(1.60) 

0.36 
(0.10) 

 

 
Figure 2: An example of Bland-Altman analysis on estimated systolic and diastolic blood pressure values derived ArterialNet’s ABP waveform 

 

 
 


