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Abstract— Irregular sampling of time series in electronic
health records (EHRs) presents a challenge for the development
of machine learning models. Additionally, the pattern of missing
data in certain clinical variables is not random, but depends on
the decisions of clinicians and the state of the patient. Point pro-
cess is a mathematical framework for analyzing event sequence
data that is consistent with irregular sampling patterns. To
tackle the challenges posed by EHRs, we propose a transformer
event encoder with point process loss that encodes the pattern
of laboratory tests in EHRs. We conduct experiments on two
real-world EHR databases to evaluate our proposed approach.
Firstly, we learn the transformer event encoder jointly with an
existing state encoder in a self-supervised learning approach
which gives superior performance in negative log-likelihood and
future event prediction. Additionally, we propose an algorithm
for aggregating attention weights that can reveal the interaction
between the events. Secondly, we transfer and freeze the learned
transformer event encoder to the downstream task for the
outcome prediction (mortality and sepsis shock), where it
outperforms state-of-the-art models for handling irregularly-
sample time series. Our results demonstrate that our approach
can improve representation learning in EHRs and can be useful
for clinical prediction tasks.

Clinical relevance—The transformer event encoder presented
in this study can be utilized for analyzing irregularly sampled
time series patterns and other event sequences naturally found
in modern electronic health records (EHRs). As a result, this
approach provides a promising avenue for facilitating data
analysis in the field of computer science and healthcare.

keywords: Electronic Health Records (EHRs), Point Process,
irregular sampling, informative missingness, self-supervised
learning

I. INTRODUCTION

Machine learning has the potential to revolutionize health-
care by leveraging the vast amounts of data available in
electronic health records (EHRs) to develop more accurate
clinical decision support systems. EHRs store patient health
information, such as medical history, medications, lab results,
and diagnostic images, which can be used as input for
machine learning algorithms.

Irregular sampling is one of the data challenges for ma-
chine learning (ML) when using EHRs. EHR data is often
collected at different times and frequencies, depending on
a patient’s needs and visit schedules, which can result in
uneven and irregularly sampled time series. Asynchronous
and incomplete observation of certain clinical variables can
also be regarded as missingness in the data. The sources
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of missing data in EHRs must be carefully understood. For
instance, lab measurements are usually ordered as part of a
diagnostic work-up, and the presence or absence of a data
point conveys information about the patient’s state [1].

Irregularly sampled data is a challenge for generic ma-
chine learning (ML) models, often requiring imputation or
aggregation techniques in pre-processing. In contrast, end-to-
end models like Gaussian process [2], Recurrent Neural Net-
works [3, 4], and transformers [5, 6] are preferred because
they can handle irregularly-sampled time series without the
need for dealing with missingness in pre-processing.

Point process is a mathematical framework for describing
the distribution of events in time or space that naturally
works with asynchronous events. In healthcare, medications,
ICD codes, or laboratory measurements can be regarded as
a sequence of events that are ordered by clinicians. More
recently, Neural Point Processes (NPPs) have been developed
to better characterize conditional intensity functions (CIFs)
by leveraging the representation power of deep neural net-
works [7, 8].

This study utilized a transformer event encoder (TEE) with
a point process loss function in a self-supervised learning
approach to learn the interaction between pattern laboratory
measurements. An aggregation algorithm was proposed to
extract event interaction from attention weights in the trans-
former. The pre-trained TEE was then transferred to improve
the outcome prediction in two EHRs dataset.

II. METHODOLOGY

A. problem formulation

An irregularly sampled data can be denoted as D =
{Ei,Ui Si, yi}Ni=1 where N is the number of samples, Si and
yi are static covariates and label (if applicable) respectively.
The irregularly sampled time series is represented as a
sequence of tuples Ui = {(tp, kp, vp)}Pp=1 where P is the
total number of observations and tp, kp, vp represents the
time, modality, and value of p-th observation, respectively.
Additionally, Ei = {(tj , ej)}Lj=1 represents event sequence
data that is available in the patient EHRs.

B. Proposed Model

The model comprises two modules: A transformer event
encoder (TEE) for encoding Ei, and a deep attention module
(DAM) for encoding Ui. Each of these modules encodes the
available data until tj to produce two embedded vectors: hj

for TEE and yj for DAM. The concatenated vector [hj ||yj ]
is then utilized for any self-supervised or supervised learning
task (see Fig. 1).



Here, we only explain the TEE module. The DAM is
proposed in [6] and is based on recent advances in differ-
entiable set function learning [9, 10]. We refer the reader to
the respective references for a better understanding.

Transformer Event Encoder. We use a transformer event
encoder (TEE) similar to THP [7] with a few modifications.
In the first step, we embed all event marks as Eemb =
E×Wemb, where E ∈ RL×M is the binary encoding matrix
of all event marks (multi-label or multi-class), and Wemb ∈
RM×demb is the trainable embedding matrix. In addition,
we encode the vector of timestamps t = [t1, t2, ..., tL] to
Z = [z(t1), z(t2), ..., z(tL)] ∈ RL×dtime using the following
transformation formula:

[z(tj)]k =

cos
(

tj
T (k−1)/dt

)
if k is odd

sin
(

tj
T k/dt

)
if k is even

(1)

Here, T represents the maximum time scale and dtime is
the time embedding dimension. This transformation closely
resembles positional encodings in transformers [11], where
the index is replaced by the timestamp. Unlike THP and
the original positional encoding [11], which assume demb =
dtime and add the time encoding to the event embedding,
we propose concatenating these two vectors before providing
them as input to the transformer block:

Xev = [Eemb||Z] ∈ RL×(demb+temb) (2)

Finally, we use the standard transformer architecture to
encode the embedded events matrix Xev into the encoded
matrix H = (h1, ..., hj , ..., hL).

It is important to use the correct attention mask matrix
to prevent information leakage from the future to the past.
The vector hj should contain the available information up
until the j-th event, which will be used to parameterize the
CIFs in the future. To accomplish this, an upper triangular
masking matrix m0 is needed, with the elements above the
diagonal masked with one.

We propose a second modification to our approach by in-
troducing a masking parameter, denoted as w. This involves
shifting the left column of the input matrix, m0, by w to
obtain the masked matrix, mw. The resulting output, hj , will
contain information only about the first (j−w) events. This
type of masking could be useful in preventing overfitting.

Once we obtain a representation of a sample using em-
bedded events and states, we can parameterize conditional
intensity functions (CIFs) of the events. In neural point
process literature, many approaches have been proposed to
decode either conditional or cumulative intensity functions.
We will use a decoder similar to [8] as it can model both
exciting and inhibiting effects for CIFs:

µm,j = gelu(hjWm,µ + yjWm,µ), (3)
ηm,j = gelu(hjWm,η + yjWm,η), (4)
γm,j = gelu(hjWm,γ + yjWm,γ). (5)

The gelu function is a nonlinear activation that incorpo-
rates the Gaussian Error Linear Unit. Through empirical
evidence, it has been demonstrated to outperform other
activation functions when utilized for self-attention [12].
Finally, we can express the intensity function as follows:

λm(t) = softplus(µm,j+

(ηm,j − µm,j) exp(−γm,j(t− tj))), (6)

for t ∈ (tj , tj+1], where the softplus ensures the CIF
to be positive. Finally, we define the loss function in the
marked case, which assumes that the marks and timestamps
are conditionally independent given Ht:

log pmarked(Si) =

L∑
j=1

M∑
m=1

1(ej = m) log p∗(ej = m)

+
L∑

j=1

λ∗(tj)−
∫ tL

t1

λ∗(t′)dt′ (7)

This marked case is essentially an autoencoder for the next
mark prediction, with a single-dimensional point process for
timestamps only. We use Mont Carlo sampling to compute
the integral in equation 7.

Attention Aggregation. The attention matrix of the TEE
for each sample can be used for model interpretability.
Additionally, we can aggregate attention matrices of a group
of samples to extract an influence matrix that reveals the
interaction between events. Consider the attention matrix of
a sample, Ap

Lp×Lp
where the sum of the elements in each

row equals one. we multiply each row by the number of
unmasked events to compensate for different event counts.
We define the allowable event interaction matrix Cp such that
Cp

ij = 1 if Ap
ij > 0. Similarly, the active event interaction

matrix Ip specifies the significant attention values such that
Ipij = 1 if Ap

ij > ϵ. Here, we assume ϵ = 3.
Finally, we can compute the aggregated allowable inter-

action Cagg and aggregated influence matrix Iagg for N
samples:

Cagg
mn =

 N∑
p=1

Lp∑
j=2

j∑
i=1

Cp
ij1(e

p
j = n)1(epi = m)

 (8)

Iaggmn =

 N∑
p=1

Lp∑
j=2

j∑
i=1

Ipij1(e
p
j = n)1(epi = m)

 /Cagg
mn

(9)

Here, Cagg
mn can be interpreted as the number of times the

event n occurs before the event m. Similarly, Iaggmn reveals
the fraction of Cagg

mn in which event n plays a significant role
in the prediction of event m.

C. Baselines & Training

We compare our method to the following approaches
which are particularly adapted for irregularly-sampled time



Fig. 1. Training procedure

series: Transformer [11], GRU-D [3], SeFT [6], IP-NET [13],
mTAND [14], and RainDrop [5].

Our experiment employed the identical 80-10-10 train-
validation-test split as described in RainDrop [5]. To ensure
consistency, we execute 20 epochs for all models, capturing
the parameters with the highest AUROC in the validation set,
which we subsequently apply to make predictions for testing
samples. A batch size of 128 and a learning rate of 0.001
are utilized. The masking parameter w is also set to 0. The
training set was upsampled so that each batch contains equal
number of positive and negative examples.

D. Datasets

We utilize two intensive care unit (ICU) electronic health
record (EHR) datasets for analysis. The 2012 Physionet
challenge dataset (Physio12) [15] consists of 12,000 ICU
stays, each with at least 48 hours duration. Patients’ de-
mographic information is included, along with 36 irregu-
larly observed sensor readings. The objective is to predict
mortality (prevalence of 14%). The second dataset is the
2019 Physionet challenge dataset (Physio19) [16], which
includes clinical data from almost 40,000 ICU patients,
sharing similar variables compared to Physio12. The focus
of this dataset is on predicting sepsis mortality (prevalence
of 4.2%).

III. EXPERIMENTS & RESULTS

The overall training procedure (self-supervised learning
followed by supervised learning) is depicted in Fig. 1 which
we explain in more details.

A. Self-supervised learning

In this work, we jointly train both TEE and DAM with
a defined decoder loss in equation (7). Two evaluation
metrics are reported, negative log-likelihood normalized by
the number of events (NLL/#events) [8], and area under the
receiver operating characteristic curve (AUROC) for future
event prediction. We also compare our model with the case
where only TEE is used to demonstrate the effectiveness of
DAM for CIF characterization.

The results for the utility of state encodings in two
healthcare datasets (Physio12, Physio19) are presented in
Table I. Our analysis indicates that state encoding using
DAM consistently results in higher AUROC to predict the
future event type and a higher LL/#event ratio in all cases.

It is also intuitive that, in the hospital setting, the absolute
value of patient states could prove useful in determining the
order of future laboratory events. Furthermore, this is the first
study which demonstrates that an additional module could
prove useful in neural point process modeling.

TABLE I
PERFORMANCE OF OUR MODEL IN THE SELF-SUPERVISED LEARNING

TASK

Metric

Dataset Model AUROC LL/#events

Physio12
TEE 0.80(0.04) -1.34(0.04)
TEE+DAM 0.84(0.02) -1.30(0.03)

Physio19
TEE 0.78(0.05) -0.87(0.26)
TEE+DAM 0.86(0.02) -0.72(0.27)

Another advantage of the proposed method is the use of
attention mechanisms in both event and state encoders. Fig.2
shows the t-SNE plot for the learned representations of an
example ([hj ||yj ]) in the self-supervised learning task, where
each data point is colored by its true label (red is positive).
It is interesting to see that although we have not trained
our model for the prediction label, the prevalence of positive
examples is different in the two subgroups shown in the plot
(25% vs 4%). This means that the sampling pattern could
be informative of the label. Additionally, we have shown the
aggregated influence matrix (Iagg) for the two subgroups.
Here, each event represents 10 most frequent patterns of
laboratory values (show in bottom of 2). We can see that
the general structure of influence matrix seems to be the
same, however, in the second group (G2), P9 and P10 has
more influence on other events.

B. Supervised learning

In the second step, we transfer the pre-trained TEE from
the first step and freeze all its parameters (1). We then
optimize the DAM with respect to the label loss, which is
a binary cross-entropy loss function. We freeze the TEE to
ensure that the missingness pattern in the data does not affect
our model’s ability to label accurately.

Table II presents the results for the downstream tasks in
Physio12 and Physio19. It can be observed that the AUROC
and AUPRC consistently improve in Physio12, as well as the
AUROC in Physio19.

IV. CONCLUSION

In this work, we propose a transformer event encoder
that utilizes the missingness pattern of irregularly sampled
time series in electronic health records (EHRs). We have
demonstrated its effectiveness in both self-supervised and
supervised learning tasks using two real-world databases.



Fig. 2. t-SNE plot for the learned representations in the self-supervised
learning step. The aggregated influence matrix is shown for two subgroups

TABLE II
PERFORMANCE OF OUR MODEL COMPARED TO THE STATE-OF-THE-ART

METHODS IN THE SUPERVISED LEARNING STEP

Physio12 Physio19

AUROC AUPRC AUROC AUPRC

Transformer 83.3(0.7) 47.9(3.6) 82.7(2.6) 41.4(5.9)
GRU-D 81.9(2.1) 46.1(4.7) 83.9(1.7) 46.9(2.1)
SeFT 85.1(0.4) 52.4(1.1) 81.2(2.3) 41.9(3.1)
mTAND 84.2(0.8) 48.2(3.4) 80.4(1.3) 32.4(1.8)
IP-Net 82.6(1.4) 47.6(3.1) 84.6(1.3) 38.1(3.7)
Raindrop 82.6(1.7) 44.0(0.3) 75.0(4.8) 47.2(6.8)

Ours 85.5(0.3) 53.1(2.1) 86.6(2.0) 45.7(5.6)

It is important to note that the TEE does not require any
extra information, rather it utilizes the pattern of laboratory
values. Another benefit of a TEE encoder is its ability to
handle additional data in the form of event sequence data,
such as medication details and clinical events. Although we
did not have access to additional data in this dataset, in
other datasets like MIMIC-IV, numerous data points exist
that could be utilized through TEE.
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